General Model of Temperature-dependent Modulus and Yield Strength of Thermoplastic Polymers

Ping-Yuan Huang Zhan-Sheng Guo Jie-Min Feng

Citation:  Ping-Yuan Huang, Zhan-Sheng Guo, Jie-Min Feng. General Model of Temperature-dependent Modulus and Yield Strength of Thermoplastic Polymers[J]. Chinese Journal of Polymer Science, 2020, 38(4): 382-393. doi: 10.1007/s10118-020-2360-7 shu

General Model of Temperature-dependent Modulus and Yield Strength of Thermoplastic Polymers

English


    1. [1]

      Dubary, N.; Taconet, G.; Bouvet, C.; Vieille, B. Influence of temperature on the impact behavior and damage tolerance of hybrid woven-ply thermoplastic laminates for aeronautical applications. Compos. Struct. 2017, 168, 663−674. doi: 10.1016/j.compstruct.2017.02.040

    2. [2]

      Malpot, A.; Touchard, F.; Bergamo, S. Influence of moisture on the fatigue behaviour of a woven thermoplastic composite used for automotive application. Mater. Des. 2016, 98, 12−19.

    3. [3]

      Kalnaus, S.; Wang, Y.; Turner, J. A. Mechanical behavior and failure mechanisms of Li-ion battery separators. J. Power Sources 2017, 348, 255−263. doi: 10.1016/j.jpowsour.2017.03.003

    4. [4]

      Ching, Y. C.; Chuah, C. H.; Ching, K. Y.; Abdullah, L. C.; Rahman, A. In Recent developments in polymer macro, micro and nano blends. Vol. 5, ed. By Visakh, P. M.; Markovic, G.; Pasquini, D. Woodhead Publishing, Oxford, 2017, p. 111−129.

    5. [5]

      Sperling, L. H. In Introduction to physical polymer science, 4th edn. Vol. 1, ed. By Sperling, L. H. John. Wiley. &. Sons, Inc, 2005, p. 1−28.

    6. [6]

      Gu, P.; Asaro, R. J. Structural buckling of polymer matrix composites due to reduced stiffness from fire damage. Compos. Struct. 2005, 69, 65−75. doi: 10.1016/j.compstruct.2004.05.016

    7. [7]

      Ha, S. K.; Springer, G. S. Nonlinear mechanical properties of a thermoset matrix composite at elevated temperatures. J. Compos. Mater. 1989, 23, 1130−1158. doi: 10.1177/002199838902301103

    8. [8]

      Dutta, P. K.; Hui, D. Creep rupture of a GFRP composite at elevated temperatures. Compu. Struct. 2000, 76, 153−161. doi: 10.1016/S0045-7949(99)00176-5

    9. [9]

      Wang, S.; Zhou, Z.; Zhang, J.; Fang, G.; Wang, Y. Effect of temperature on bending behavior of woven fabric-reinforced PPS-based composites. J. Mater. Sci. 2017, 52, 13966−13976. doi: 10.1007/s10853-017-1480-0

    10. [10]

      Murayama, T.; Bell, J. P. Relation between the network structure and dynamic mechanical properties of a typical amine-cured epoxy polymer. J. Polym. Sci., Part B: Polym. Phys. 1970, 8, 437−445. doi: 10.1002/pol.1970.160080309

    11. [11]

      Mahieux, C. A.; Reifsnider, K. L. Property modeling across transition temperatures in polymers: a robust stiffness-temperature model. Polymer 2001, 42, 3281−3291. doi: 10.1016/S0032-3861(00)00614-5

    12. [12]

      Mahieux, C. A.; Reifsnider, K. L. Property modeling across transition temperatures in polymers: application to thermoplastic systems. J. Mater. Sci. 2002, 37, 911−920. doi: 10.1023/A:1014383427444

    13. [13]

      Gibson, A. G.; Browne, T. N. A.; Feih, S.; Mouritz, A. P. Modeling composite high temperature behavior and fire response under load. J. Compos. Mater. 2012, 46, 2005−2022. doi: 10.1177/0021998311429383

    14. [14]

      Gibson, A. G.; Wu, Y. S.; Evans, J. T.; Mouritz, A. P. Laminate theory analysis of composites under load in fire. J. Compos. Mater. 2006, 40, 639−658. doi: 10.1177/0021998305055543

    15. [15]

      Bai, Y.; Keller, T.; Vallee, T. Modeling of stiffness of FRP composites under elevated and high temperatures. Compos. Sci. Technol. 2008, 68, 3099−3106. doi: 10.1016/j.compscitech.2008.07.005

    16. [16]

      Guo, Z. S.; Feng, J. M.; Wang, H.; Hu, H. J.; Zhang, J. Q. A new temperature-dependent modulus model of glass/epoxy composite at elevated temperatures. J. Compos. Mater. 2013, 47, 3303−3310. doi: 10.1177/0021998312464080

    17. [17]

      Feng, J. M.; Guo, Z. S. Temperature-frequency-dependent mechanical properties model of epoxy resin and its composites. Compos. Part B-Eng. 2016, 85, 161−169. doi: 10.1016/j.compositesb.2015.09.040

    18. [18]

      Feng, J. M.; Guo, Z. S. Effects of temperature and frequency on dynamic mechanical properties of glass/epoxy composites. J. Mater. Sci. 2016, 51, 2747−2758. doi: 10.1007/s10853-015-9589-5

    19. [19]

      Eyring, H. Viscosity, plasticity and diffusion as examples of absolute reaction rates. J. Chem. Phys. 1936, 4, 283−291. doi: 10.1063/1.1749836

    20. [20]

      Halsey, G.; White, H. J.; Eyring, H. Mechanical properties of textiles I. Text. Res. 1945, 15, 295−311. doi: 10.1177/004051754501500901

    21. [21]

      Ree, T.; Eyring, H. Theory of non-Newtonian flow. I. Solid plastic system. J. Appl. Phys. 1955, 26, 793−800. doi: 10.1063/1.1722098

    22. [22]

      Govaert, L. E.; Vries, P. J.; Fennis, P. J.; Nijenhuis, W. F.; Keustermans, J. P. Influence of strain rate, temperature and humidity on the tensile yield behaviour of aliphatic polyketone. Polymer 2000, 41, 1959−1962. doi: 10.1016/S0032-3861(99)00468-1

    23. [23]

      Chaleat, C. M.; Michel-Amadry, G.; Halley, P. J.; Truss, R. W. Properties of a plasticised starch blend—Part 2: influence of strain rate, temperature and moisture on the tensile yield behaviour. Carbohydr. Polym. 2008, 74, 366−371. doi: 10.1016/j.carbpol.2008.03.002

    24. [24]

      Lim, S. H.; Yu, Z. Z.; Mai, Y. W. Effects of loading rate and temperature on tensile yielding and deformation mechanisms of nylon 6-based nanocomposites. Compos. Sci. Technol. 2010, 70, 1994−2002. doi: 10.1016/j.compscitech.2010.07.023

    25. [25]

      Kambour, R. P. A review of crazing and fracture in thermoplastics. J. Polym. Sci. Macromol. Rev. 1973, 7, 1−154.

    26. [26]

      Le Gac, P. Y.; Arhant, M.; Gall, M. L.; Davies, P. Yield stress changes induced by water in polyamide 6: characterization and modeling. Polym. Degrad. Stab. 2017, 137, 272−280. doi: 10.1016/j.polymdegradstab.2017.02.003

    27. [27]

      Bai, Y.; Keller, T. Time dependence of material properties of FRP composites in fire. J. Compos. Mater. 2009, 43, 2469−2484. doi: 10.1177/0021998309344641

    28. [28]

      Bai, Y.; Keller, T. Pultruded GFRP tubes with liquid-cooling system under combined temperature and compressive loading. Compos. Struct. 2009, 90, 115−121. doi: 10.1016/j.compstruct.2009.02.009

    29. [29]

      Bai, Y.; Keller, T. Modeling of mechanical response of FRP composites in fire. Compos. Part A-Appl. Sci. Manuf. 2009, 40, 731−738. doi: 10.1016/j.compositesa.2009.03.003

    30. [30]

      Bai, Y.; Keller, T.; Correia, J. R.; Branco, F. A.; Ferreira, J. G. Fire protection systems for building floors made of pultruded GFRP profiles—Part 2: modeling of thermomechanical responses. Compos. Part B-Eng. 2010, 41, 630−636. doi: 10.1016/j.compositesb.2010.09.019

    31. [31]

      Correia, J. R.; Gomes, M. M.; Pires, J. M.; Branco, F. A. Mechanical behaviour of pultruded glass fibre reinforced polymer composites at elevated temperature: experiments and model assessment. Compos. Struct. 2013, 98, 303−313. doi: 10.1016/j.compstruct.2012.10.051

    32. [32]

      Feng, P.; Wang, J.; Tian, Y.; Loughery, D.; Wang, Y. Mechanical behavior and design of FRP structural members at high and low service temperatures. J. Compos. Constr. 2016, 20, 04016021. doi: 10.1061/(ASCE)CC.1943-5614.0000676

    33. [33]

      Wu, C.; Bai, Y.; Mottram, J. T. Effect of elevated temperatures on the mechanical performance of pultruded FRP joints with a single ordinary or blind bolt. J. Compos. Constr. 2016, 20, 04015045. doi: 10.1061/(ASCE)CC.1943-5614.0000608

    34. [34]

      Fang, H.; Wong, M. B.; Bai, Y. Heating rate effect on the thermophysical properties of steel in fire. J. Constr. Steel. Res. 2017, 128, 611−617. doi: 10.1016/j.jcsr.2016.09.016

    35. [35]

      Rosa, I. C.; Morgado, T.; Correia, J. R.; Firmo, J. P.; Silvestre, N. Shear behavior of GFRP composite materials at elevated temperature. J. Compos. Constr. 2018, 22, 04018010. doi: 10.1061/(ASCE)CC.1943-5614.0000839

    36. [36]

      Zhang, L.; Bai, Y.; Qi, Y. J.; Fang, H.; Wu, B. S. Post-fire mechanical performance of modular GFRP multicellular slabs with prefabricated fire resistant panels. Compos. Part B-Eng. 2018, 143, 55−67. doi: 10.1016/j.compositesb.2018.01.034

    37. [37]

      Singla, R. K.; Maiti, S. N.; Ghosh, A. K. Mechanical, morphological, and solid-state viscoelastic responses of poly(lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes. J. Mater. Sci. 2016, 51, 10278−10292. doi: 10.1007/s10853-016-0255-3

    38. [38]

      Banerjee, S. S.; Bhowmick, A. K. An effective strategy to develop nanostructured morphology and enhanced physico-mechanical properties of PP/EPDM thermoplastic elastomers. J. Mater. Sci. 2016, 51, 6722−6734. doi: 10.1007/s10853-016-9959-7

    39. [39]

      Zhou, R.; Gao, W. Q.; Xia, L. C.; Wu, H.; Guo, S. Y. The study of damping property and mechanism of thermoplastic polyurethane/phenolic resin through a combined experiment and molecular dynamics simulation. J. Mater. Sci. 2018, 53, 9350−9362. doi: 10.1007/s10853-018-2218-3

    40. [40]

      Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290−301. doi: 10.1093/jxb/10.2.290

    41. [41]

      Xu, L.; Selin, V.; Zhuk, A.; Ankner, J. F.; Sukhishvili, S. A. Molecular weight dependence of polymer chain mobility within multilayer films. ACS Macro Lett. 2013, 2, 865−868. doi: 10.1021/mz400413v

    42. [42]

      Lin, Y. F.; Li, X. Y.; Meng, L. P.; Chen, X. W.; Lv, F.; Zhang, Q. L.; Zhang, R.; Li, L. B. Structural evolution of hard-elastic isotactic polypropylene film during uniaxial tensile deformation: The effect of temperature. Macromolecules 2018, 51, 2690−2705. doi: 10.1021/acs.macromol.8b00255

    43. [43]

      ISO, 527. Plastics determination of tensile properties—Part 2: test conditions for moulding and extrusion plastics. ISO, Genève, 2012, p. 1−14

    44. [44]

      Ghorbel, E. A viscoplastic constitutive model for polymeric materials. Int. J. Plast. 2008, 24, 2032−2058. doi: 10.1016/j.ijplas.2008.01.003

    45. [45]

      Jancar, J.; Hoy, R. S.; Jancarova, E.; Zidek, J. Effect of temperature, strain rate and particle size on the yield stresses and post-yield strain softening of PMMA and its composites. Polymer 2015, 63, 196−207. doi: 10.1016/j.polymer.2015.03.001

    46. [46]

      Cheng, S. W.; Wang, S. Q. Elastic yielding in cold drawn polymer glasses well below the glass transition temperature. Phys. Rev. Lett. 2013, 110, 1−4.

    47. [47]

      Jin, T.; Zhou, Z. W.; Shu, X. F.; Wang, Z. H.; Wu, G. Y.; Zhao, L. M. Investigation on the yield behaviour and macroscopic phenomenological constitutive law of PA66. Polym. Test. 2018, 69, 563−582. doi: 10.1016/j.polymertesting.2018.06.014

    48. [48]

      Jin, T.; Zhou, Z. W.; Shu, X. F.; Wang, Z. H.; Wu, G. Y.; Zhao, L. M. Experimental investigation on the yield loci of PA66. Polym. Test. 2016, 51, 148−150. doi: 10.1016/j.polymertesting.2016.03.007

    49. [49]

      Tang, Y. L.; Karlsson, A. M.; Santare, M. H.; Gilbert, M.; Cleghorn, S.; Johnson, W. B. An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2006, 425, 297−304. doi: 10.1016/j.msea.2006.03.055

    50. [50]

      Akay, M. Aspects of dynamic mechanical analysis in polymeric composites. Compos. Sci. Technol. 1993, 47, 419−423. doi: 10.1016/0266-3538(93)90010-E

    51. [51]

      Künniger, T.; Grüneberger, F.; Fischer, B.; Walder, C. Nanofibrillated cellulose in wood coatings: viscoelastic properties of free composite films. J. Mater. Sci. 2017, 52, 10237−10249. doi: 10.1007/s10853-017-1193-4

    52. [52]

      Mauro, J. C.; Yue, Y. Z.; Ellison, A. J.; Gupta, P. K.; Allan, D. C. Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. 2009, 106, 19780−19784. doi: 10.1073/pnas.0911705106

    53. [53]

      Williams, M. L.; Landel, R. F.; Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 1955, 77, 3701−3707. doi: 10.1021/ja01619a008

    54. [54]

      Xiao, C.; Jho, J. Y.; Yee, A. F. Correlation between the shear yielding behavior and secondary relaxations of bisphenol a polycarbonate and related copolymers. Macromolecules 1994, 27, 2761−2768. doi: 10.1021/ma00088a017

    55. [55]

      Ferrillo, R. G.; Achorn, P. J. Comparison of thermal techniques for glass transition assignment. II. Commercial polymers. J. Appl. Polym. Sci. 1997, 64, 191−195.

    56. [56]

      Monemian, S.; Jafari, S. H.; Khonakdar, H. A. Pötschke, P. Dynamic-mechanical analysis of MWNTs-filled PC/ABS blends. Polym. Eng. Sci. 2014, 54, 2696−2706. doi: 10.1002/pen.23834

    57. [57]

      Ma, L.; Zhang, Y.; Meng, Y.; Anusonti-Inthra, P.; Wang, S. Preparing cellulose nanocrystal/acrylonitrile-butadiene-styrene nanocomposites using the master-batch method. Carbohydr. Polym. 2015, 125, 352−359. doi: 10.1016/j.carbpol.2015.02.062

    58. [58]

      Zhang, S. U.; Han, J.; Kang, H. W. Temperature-dependent mechanical properties of ABS parts fabricated by fused deposition modeling and vapor smoothing. Int. J. Precis. Eng. Manuf. 2017, 18, 763−769. doi: 10.1007/s12541-017-0091-7

    59. [59]

      Tjong, S. C.; Jiang, W. Mechanical performance of ternary in situ polycarbonate/poly(acrylonitrile-butadiene-styrene)/liquid crystalline polymer composites. J. Appl. Polym. Sci. 1999, 74, 2274−2282. doi: 10.1002/(SICI)1097-4628(19991128)74:9<2274::AID-APP17>3.0.CO;2-1

    60. [60]

      Manchanda, B.; Kottiyath, V. K.; Kapur, G. S.; Kant, S.; Choudhary, V. Morphological studies and thermo-mechanical behavior of polypropylene/sepiolite nanocomposites. Polym. Compos. 2017, 38, E285−E294. doi: 10.1002/pc.23800

    61. [61]

      Chafidz, A.; Rengga, W. D. P.; Khan, R.; Kaavessina, M.; Almutlaq, A. M.; Almasry, W. A.; Ajbar, A. Polypropylene/multiwall carbon nanotubes nanocomposites: nanoindentation, dynamic mechanical, and electrical properties. J. Appl. Polym. Sci. 2017, 134, 45293. doi: 10.1002/app.45293

    62. [62]

      Li, L. B. In situ synchrotron radiation techniques: Watching deformation-induced structural evolutions of polymers. Chinese J. Polym. Sci. 2018, 36, 1093−1102. doi: 10.1007/s10118-018-2169-9

    63. [63]

      Zhou, C. B.; Guo, H. L.; Li, J. Q.; Huang, S. Y.; Li, H. F.; Meng, Y. F.; Yu, D. H.; Christiansen, J. D.; Jiang, S. C. Temperature dependence of poly(lactic acid) mechanical properties. RSC Adv. 2016, 6, 113762−113772. doi: 10.1039/C6RA23610C

    64. [64]

      Zhang, W. Y.; Li, J. Q.; Li, H. F.; Jiang, S. C.; An, L. J. Temperature dependence of deformation behavior of poly(butylene terephthalate). Polymer 2018, 143, 309−315. doi: 10.1016/j.polymer.2018.04.030

    65. [65]

      Cao, J.; Wen, N.; Zheng, Y. Y. Effect of long chain branching on the rheological behavior, crystallization and mechanical properties of polypropylene random copolymer. Chinese J. Polym. Sci. 2016, 34, 1158−1171. doi: 10.1007/s10118-016-1830-4

    66. [66]

      Flory, P. J.; Yoon, D. Y. Molecular morphology in semicrystalline polymers. Nature 1978, 272, 226−229. doi: 10.1038/272226a0

    67. [67]

      Zhu, S. Z.; Lempesis, N.; In't Veld, P. J.; Rutledge, G. C. Molecular simulation of thermoplastic polyurethanes under large tensile deformation. Macromolecules 2018, 51, 1850−1864. doi: 10.1021/acs.macromol.7b02367

    68. [68]

      Zhu, S. Z.; Lempesis, N.; In't Veld, P. J.; Rutledge, G. C. Molecular simulation of thermoplastic polyurethanes under large compressive deformation. Macromolecules 2018, 51, 9306−9316. doi: 10.1021/acs.macromol.8b01922

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  4302
  • HTML全文浏览量:  146
文章相关
  • 发布日期:  2020-04-01
  • 收稿日期:  2019-07-14
  • 修回日期:  2019-09-07
  • 网络出版日期:  2019-12-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章