Anionic Polymerization of Butadiene Using Lithium/Potassium Multi-metallic Systems: Influence on Polymerization Control and Polybutadiene Microstructure

Antoine Forens Kevin Roos Charlotte Dire Benoit Gadenne Stéphane Carlotti

Citation:  Antoine Forens, Kevin Roos, Charlotte Dire, Benoit Gadenne, Stéphane Carlotti. Anionic Polymerization of Butadiene Using Lithium/Potassium Multi-metallic Systems: Influence on Polymerization Control and Polybutadiene Microstructure[J]. Chinese Journal of Polymer Science, 2020, 38(4): 357-362. doi: 10.1007/s10118-020-2355-4 shu

Anionic Polymerization of Butadiene Using Lithium/Potassium Multi-metallic Systems: Influence on Polymerization Control and Polybutadiene Microstructure

English


    1. [1]

      Aggarwal, S. L.; Hargis, I. G.; Livigni, R. A.; Fabris, H. J.; Marker, L. F, in Advances in elastomers and rubber elasticity, ed. by Lal, J.; Mark, J. E. Springer US, Boston MA, 1986, p. 17.

    2. [2]

      Ryu, M. S.; Kim, H. G.; Kim, H. Y.; Min, K. S.; Kim, H. J.; Lee, H. M. Prediction of the glass transition temperature and design of phase diagrams of butadiene rubber and styrene-butadiene rubber via molecular dynamics simulations. Phys. Chem. Chem. Phys. 2017, 19, 16498−16506. doi: 10.1039/C7CP00080D

    3. [3]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 1: Lewis base (σ) amine-type polar modifiers. Int. J. Polym. Anal. Charact. 2015, 20, 574−588. doi: 10.1080/1023666X.2015.1053599

    4. [4]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 2: Lewis base (σ) amine-ether and ether-type polar modifiers. Int. J. Polym. Anal. Charact. 2015, 20, 602−611. doi: 10.1080/1023666X.2015.1054079

    5. [5]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 3: Lewis acid alkoxide (μ) and Lewis base amine, amine-ether, and ether mixed-type (Σ+μ) polar modifiers. Int. J. Polym. Anal. Charact. 2016, 21, 44−45. doi: 10.1080/1023666X.2015.1091906

    6. [6]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 4: acid-base polar modifiers forming σ-μ complexes: amine-alkoxide, amine-ether-alkoxide, and ether-alkoxide. Int. J. Polym. Anal. Charact. 2016, 21, 59−68. doi: 10.1080/1023666X.2016.1092655

    7. [7]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 5: comparison of μ, σ, Σ+μ, and Σμ complexes. Int. J. Polym. Anal. Charact. 2017, 22, 51−61. doi: 10.1080/1023666X.2016.1230264

    8. [8]

      Bywater, S.; Firat, Y.; Black, P. E. Microstructures of polybutadienes prepared by anionic polymerization in polar solvents. Ion-pair and solvent effects. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 669−672. doi: 10.1002/pol.1984.170220316

    9. [9]

      Arest-Yakubovich, A. A.; Basova, R. V.; Nakhmanovich, B. I.; Kristalnyi, E. V. The main special characteristics of anionic polymerization initiated by group II metals. Acta Polym. 1984, 35, 1−7. doi: 10.1002/actp.1984.010350101

    10. [10]

      Salle, R.; Pham, Q. T. Polymérisation anionique des diènes. VI. Microstructure des polybutadiène et polyisoprène par résonance magnétique protonique à 250 MHz et mécanismes de propagation. J. Polym. Sci. Polym. Chem. Ed. 1977, 15, 1799−1810. doi: 10.1002/pol.1977.170150802

    11. [11]

      Lochmann, L. Reaction of organolithium compounds with alkali metal alkoxides—a route to superbases. Eur. J. Inorg. Chem. 2000, 6, 1115−1126. doi: 10.1002/(SICI)1099-0682(200006)2000:6<1115::AID-EJIC1115>3.0.CO;2-K

    12. [12]

      Schlosser, M.; Strunk, S. The “super-basic” butyllithium/potassium tert-butoxide mixture and other lickor-reagents. Tetrahedron Lett. 1984, 25, 741−744. doi: 10.1016/S0040-4039(01)80014-9

    13. [13]

      Lochmann, L.; Petránek, J. More efficient metallation of alkylbenzenes by modified superbases from butyllithium and potassium alkoxides. Effect of alkoxide structure and concentration. Tetrahedron Lett. 1991, 32, 1483−1488. doi: 10.1016/0040-4039(91)80364-C

    14. [14]

      Lochmann, L.; Trekoval, J. Lithium-potassium exchange in alkyllithium/potassium t-pentoxide systems: XIV. Interactions of alkoxides. J. Organomet. Chem. 1987, 326, 1−7. doi: 10.1016/0022-328X(87)80117-1

    15. [15]

      Hsieh, H. L.; Wofford, C. F. Alkyllithium and alkali metal tert-butoxide as polymerization initiator. J. Polym. Sci. A1 1969, 7, 449−460. doi: 10.1002/pol.1969.150070204

    16. [16]

      Maréchal, J. M.; Carlotti, S.; Shcheglova, L.; Deffieux, A. Stereoregulation in the anionic polymerization of styrene initiated by superbases. Polymer 2003, 44, 7601−7607. doi: 10.1016/j.polymer.2003.09.051

    17. [17]

      Patterson, D. B.; Halasa, A. F. Anionic polymerization of 1,3-butadiene to highly crystalline high trans-1,4-poly(butadiene) with potassium catalysts generated from an alkyllithium and potassium tert-amyloxide. Macromolecules 1991, 24, 4489−4494. doi: 10.1021/ma00016a002

    18. [18]

      Nakhmanovich, B. I.; Zolotareva, I. V.; Arest-Yakubovich, A. A. Study on the mechanism of anionic polymerization with mixed RLi-R′OK Initiators, 1. Polymerization of butadiene. Macromol. Chem. Phys. 1999, 200, 2015−2021. doi: 10.1002/(SICI)1521-3935(19990901)200:9<2015::AID-MACP2015>3.0.CO;2-I

    19. [19]

      Wofford, C. F.; Hsieh, H. L. Copolymerization of butadiene and styrene by initiation with alkyllithium and alkali metal tert-butoxides. J. Polym. Sci. A1 1969, 7(2), 461−469. doi: 10.1002/pol.1969.150070205

    20. [20]

      Desbois, P.; Fontanille, M.; Deffieux, A.; Warzelhan, V.; Schade, C. Towards the control of the reactivity in high temperature anionic polymerization of styrene: retarded anionic polymerization. 3 – Influence of triisobutylaluminum on the reactivity of polystyryllithium species. Macromol. Symp. 2000, 157, 151−160. doi: 10.1002/1521-3900(200007)157:1<151::AID-MASY151>3.0.CO;2-9

    21. [21]

      Lochmann, L.; Janata, M. 50 Years of superbases made from organolithium compounds and heavier alkali metal alkoxides. Cent. Eur. J. Chem. 2014, 12, 537−548. doi: 10.2478/s11532-014-0528-0

    22. [22]

      Hsieh, H.; Quirk, R. P. Anionic polymerization: Principles and practical applications. Marcel Dekker, New York, 1996

    23. [23]

      Worsfold, D. J.; Bywater, S. Lithium alkyl initiated polymerization of isoprene. Effect of cis/trans isomerization of organolithium compounds on polymer microstructure. Macromolecules 1978, 11, 582−586. doi: 10.1021/ma60063a030

    24. [24]

      Halasa, A. F.; Mitchell, G. B.; Stayer, M.; Tate, D. P.; Oberster, A. E.; Koch, R. W. Metalation of unsaturated polymers by using activated organolithium compounds and the formation of graft copolymers. II. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 497−506. doi: 10.1002/pol.1976.170140220

    25. [25]

      Carlotti, S.; Ménoret, S.; Barabanova, A.; Desbois, P.; Deffieux, A. Effect of aluminum derivatives in the retarded styrene anionic polymerization. Polymer 2005, 46, 6836−6843. doi: 10.1016/j.polymer.2005.05.124

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  3924
  • HTML全文浏览量:  113
文章相关
  • 发布日期:  2020-04-01
  • 收稿日期:  2019-07-15
  • 修回日期:  2019-09-02
  • 网络出版日期:  2019-11-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章