Citation: Qian Ding, Michelina Soccio, Nadia Lotti, Dario Cavallo, René Androsch. Melt Crystallization of Poly(butylene 2,6-naphthalate)[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 311-322. doi: 10.1007/s10118-020-2354-5 shu

Melt Crystallization of Poly(butylene 2,6-naphthalate)

  • Poly(butylene 2,6-naphthalate) (PBN) is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit. Polymeric materials made of PBN exhibit excellent anti-abrasion and low friction properties, superior chemical resistance, and outstanding gas barrier characteristics. Many of the properties rely on the presence of crystals and the formation of a semicrystalline morphology. To develop specific crystal structures and morphologies during cooling the melt, precise information about the melt-crystallization process is required. This review article summarizes the current knowledge about the temperature-controlled crystal polymorphism of PBN. At rather low supercooling of the melt, with decreasing crystallization temperature, β′- and α-crystals grow directly from the melt and organize in largely different spherulitic superstructures. Formation of α-crystals at high supercooling may also proceed via intermediate formation of a transient monotropic liquid crystalline structure, then yielding a non-spherulitic semicrystalline morphology. Crystallization of PBN is rather fast since its suppression requires cooling the melt at a rate higher than 6000 K·s−1. For this reason, investigation of the two-step crystallization process at low temperatures requires application of sophisticated experimental tools. These include temperature-resolved X-ray scattering techniques using fast detectors and synchrotron-based X-rays and fast scanning chip calorimetry. Fast scanning chip calorimetry allows freezing the transient liquid-crystalline structure before its conversion into α-crystals, by fast cooling to below its glass transition temperature. Subsequent analysis using polarized-light optical microscopy reveals its texture and X-ray scattering confirms the smectic arrangement of the mesogens. The combination of a large variety of experimental techniques allows obtaining a complete picture about crystallization of PBN in the entire range of melt-supercoolings down to the glass transition, including quantitative data about the crystallization kinetics, semicrystalline morphologies at the micrometer length scale, as well as nanoscale X-ray structure information.
  • 加载中
    1. [1]

      Karayannidis, G. P.; Papageorgiou, G. Z.; Bikiaris, D. N; Tourasanidis, E. V. Synthesis and thermal behaviour of poly(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer 1998, 39, 4129−4134.  doi: 10.1016/S0032-3861(98)00011-1

    2. [2]

      Jeong, Y. G.; Jo, W. H.; Lee, S. C. Synthesis and crystallization behavior of poly(m-methylene 2,6-naphthalate-co-1,4-cyclohexylenedimethylene 2,6-naphthalate) copolymers. Macromolecules 2003, 36, 4051−4059.  doi: 10.1021/ma034094j

    3. [3]

      Soccio, M.; Finelli, L.; Lotti, N.; Siracusa, V.; Ezquerra, T. A.; Munari, A. Novel ethero atoms containing polyesters based on 2,6-naphthalendicarboxylic acid: a comparative study with poly(butylene naphthalate). J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 1694−1703.  doi: 10.1002/polb.21225

    4. [4]

      Hubbard, P.; Brittain, W. J.; Simonsick, W. J.; Ross, C. W. Synthesis and ring-opening polymerization of poly(alkylene 2,6-naphthalenedicarboxylate) cyclic oligomers. Macromolecules 1996, 29, 8304−8307.  doi: 10.1021/ma960850s

    5. [5]

      https://www.teijin.com/products/resin/pbn/

    6. [6]

      Soccio, M.; Nogales, A.; García-Gutierrez, M. C.; Lotti. N.; Munari, A.; Ezquerra, T. A. Origin of the subglass dynamics in aromatic polyesters by labeling the dielectric relaxation with ethero atoms. Macromolecules 2008, 41, 2651−2655.  doi: 10.1021/ma7025989

    7. [7]

      Kainulainen, T. P.; Hukka, T. I.; Özeren, H. D.; Sirviö, J. A.; Hedenqvist, M. S.; Heiskanen, J. P. Utilizing furfural-based bifuran diester as monomer and comonomer for high-performance bioplastics: properties of poly(butylene furanoate), poly(butylene bifuranoate), and their copolyesters. Biomacromolecules 2019, DOI: 10.1021/acs.biomac.9b01447.  doi: 10.1021/acs.biomac.9b01447

    8. [8]

      https://marketdesk.us/report/global-polybutylene-naphthalate-resin-pbn-resin-market-pr/66961/#details

    9. [9]

      Wang, C. S.; Lin, C. H. On the miscibility and transesterification of poly(butylene naphthalate) with a novel phosphorus containing polyester. Polymer 2000, 41, 4029−4037.  doi: 10.1016/S0032-3861(99)00542-X

    10. [10]

      Yoon, K. H.; Lee, S. C.; Park, O. O. Thermal properties of poly(ethylene 2,6-naphthalate) and poly(butylene 2,6-naphthalate) blends. Polym. J. 1994, 26, 816−821.  doi: 10.1295/polymj.26.816

    11. [11]

      Dangseeyun, N.; Supaphol, P.; Nithitanakul, M. Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym. Test. 2004, 23, 187−194.  doi: 10.1016/S0142-9418(03)00079-5

    12. [12]

      Lin, C. H.; Wang, C. S. Miscibility of poly(etherimide) and poly(butylene naphthalate) blends. Polym. Bull. 2001, 46, 191−196.  doi: 10.1007/s002890170074

    13. [13]

      Lee, S. C.; Yoon, K. H.; Kim, J. H. Crystallization kinetics of poly(butylene 2,6-naphthalate) and its copolyesters. Polym. J. 1997, 29, 1−6.  doi: 10.1295/polymj.29.1

    14. [14]

      Papageorgiou, G. Z.; Karayannidis, G. P. Multiple melting behaviour of poly(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer 1999, 40, 5325−5332.  doi: 10.1016/S0032-3861(98)00746-0

    15. [15]

      Papageorgiou, G. Z.; Karayannidis, G. P. Observations during crystallisation of poly(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer 2001, 42, 8197−8205.  doi: 10.1016/S0032-3861(01)00318-4

    16. [16]

      Papageorgiou, G. Z.; Karayannidis, G. P.; Bikiaris, D. N.; Stergiou, A.; Litsardakis, G.; Makridis, S. S. Wide-angle X-ray diffraction and differential scanning calorimetry study of the crystallization of poly(ethylene naphthalate), poly(butylene naphthalate), and their copolymers. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 843−860.  doi: 10.1002/polb.10765

    17. [17]

      Papageorgiou, D. G.; Bikiaris, D. N.; Papageorgiou, G. Z. Synthesis and controlled crystallization of in situ prepared poly(butylene-2,6-naphthalate) nanocomposites. CrystEngComm 2018, 20, 3590−3600.  doi: 10.1039/C8CE00260F

    18. [18]

      Soccio, M.; Gazzano, M.; Lotti, N.; Finelli, L.; Munari, A. Copolymerization: a new tool to selectively induce poly(butylene naphthalate) crystal form. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 1356−1367.  doi: 10.1002/polb.21740

    19. [19]

      Soccio, M.; Gazzano, M.; Lotti, N.; Finelli, L.; Munari, A. Synthesis and characterization of novel random copolymers based on PBN: influence of thiodiethylene naphthalate co-units on its polymorphic behaviour. Polymer 2010, 51, 192−200.  doi: 10.1016/j.polymer.2009.11.048

    20. [20]

      Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K. Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules 1976, 9, 266−273.  doi: 10.1021/ma60050a018

    21. [21]

      Watanabe, H. Stretching and structure of polybutylene-naphthalene-2,6-dicarboxylate films. Kobunshi. Ronbunshu. 1976, 33, 229−237.  doi: 10.1295/koron.33.229

    22. [22]

      Koyano, H.; Yamamoto, Y.; Saito, Y.; Yamanobe, T.; Komoto, T. Crystal structure of poly(butylene-2,6-naphthalate). Polymer 1998, 39, 4385−4391.  doi: 10.1016/S0032-3861(97)00618-6

    23. [23]

      Chiba, T.; Asai, S.; Xu, W.; Sumita, M. Analysis of crystallization behavior and crystal modifications of poly(butylene-2,6-naphthalene dicarboxylate). J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 561−574.  doi: 10.1002/(SICI)1099-0488(19990315)37:6<561::AID-POLB8>3.0.CO;2-H

    24. [24]

      Ju, M. Y.; Huang, J. M.; Chang, F. C. Crystal polymorphism of poly(butylene-2,6-naphthalate) prepared by thermal treatments. Polymer 2002, 43, 2065−2074.  doi: 10.1016/S0032-3861(01)00808-4

    25. [25]

      Yamanobe, T.; Matsuda, H.; Imai, K.; Hirata, A.; Mori, S.; Komoto, T. Structure and physical properties of naphthalene containing polyesters. I. Structure of poly(butylene 2,6-naphthalate) and poly(ethylene 2,6-naphthalate) as studied by solid state NMR spectroscopy. Polym. J. 1996, 28, 177−181.  doi: 10.1295/polymj.28.177

    26. [26]

      Tonelli, A. E. The conformations of poly(butylene-terephthalate) and poly(butylene-2,6-naphthalate) chains in their α and β crystalline polymorphs. Polymer 2002, 43, 6069−6072.  doi: 10.1016/S0032-3861(02)00506-2

    27. [27]

      Milani, A. A revisitation of the polymorphism of poly(butylene-2,6-naphthalate) from periodic first-principles calculations. Polymer 2014, 55, 3729−3735.  doi: 10.1016/j.polymer.2014.06.053

    28. [28]

      Soccio, M.; Lotti, N.; Finelli, L.; Munari, A. Equilibrium melting temperature and crystallization kinetics of α- and β′-PBN crystal forms. Polym. J. 2012, 44, 174−180.  doi: 10.1038/pj.2011.112

    29. [29]

      Jeong, Y. G.; Jo, W. H.; Lee, S. C. Cocrystallization behavior of poly(butylene terephthalate-co-butylene 2,6-naphthalate) random copolymers. Macromolecules 2000, 33, 9705−9711.  doi: 10.1021/ma000040n

    30. [30]

      Konishi, T.; Nishida, K.; Matsuba, G.; Kanaya, T. Mesomorphic phase of poly(butylene-2,6-naphthalate). Macromolecules 2008, 41, 3157−3161.  doi: 10.1021/ma702383b

    31. [31]

      Tokita, M.; Watanabe, J. Several interesting fields exploited through understanding of polymeric effects on liquid crystals of main-chain polyesters. Polym. J. 2006, 38, 611−638.  doi: 10.1295/polymj.PJ2006008

    32. [32]

      Tokita, M.; Osada, K.; Watanabe, J. Thermotropic liquid crystals of main-chain polyesters having a mesogenic 4,4′-biphenyldicarboxylate unit XI Smectic liquid crystalline glass. Polym. J. 1998, 30, 589−595.  doi: 10.1295/polymj.30.589

    33. [33]

      Wunderlich, B. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim. Acta 1999, 340, 37−52.  doi: 10.1016/S0040-6031(99)00252-X

    34. [34]

      Ju, M. Y.; Chang, F. C. Multiple melting behavior of poly(butylene-2,6-naphthalate). Polymer 2001, 42, 5037−5045.  doi: 10.1016/S0032-3861(00)00888-0

    35. [35]

      Ding, Q.; Jehnichen, D.; Göbel, M.; Soccio, M.; Lotti, N.; Cavallo, D.; Androsch, R. Smectic liquid crystal Schlieren texture in rapidly cooled poly(butylene naphthalate). Eur. Polym. J. 2018, 101, 90−95.  doi: 10.1016/j.eurpolymj.2018.02.010

    36. [36]

      Gazzano, M.; Soccio, M.; Lotti, N.; Finelli, L.; Munari, A. Crystallization kinetics, melting behavior, and RAP of novel etheroatom containing naphthyl polyesters. J. Therm. Anal. Calorim. 2012, 110, 907−915.  doi: 10.1007/s10973-011-1985-8

    37. [37]

      Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. Phys. Chem. 1887, 22, 286−330.

    38. [38]

      Threlfall, T. Structural and thermodynamic explanations of Ostwald’s rule. Org. Process Res. Dev. 2003, 7, 1017−1027.  doi: 10.1021/op030026l

    39. [39]

      Androsch, R.; Soccio, M.; Lotti, N.; Cavallo, D.; Schick, C. Cold-crystallization of poly(butylene 2,6-naphthalate) following Ostwald’s rule of stages. Thermochim. Acta 2018, 670, 71−75.  doi: 10.1016/j.tca.2018.10.015

    40. [40]

      Nishida, K.; Zhuravlev, E.; Yang, B.; Schick, C.; Shiraishi, Y.; Kanaya, T. Vitrification and crystallization of poly(butylene-2,6-naphthalate). Thermochim. Acta 2015, 603, 110−115.  doi: 10.1016/j.tca.2014.07.020

    41. [41]

      Bernstein, J. Polymorphism in molecular crystals. Oxford University Press, New York, 2002.

    42. [42]

      Chung, S. Y.; Kim, Y. M.; Kim, J. G.; Kim, Y. J. Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nat. Phys. 2009, 5, 68−73.  doi: 10.1038/nphys1148

    43. [43]

      Gliko, O.; Neumaier, N.; Pan, W.; Haase, I.; Fischer, M.; Bacher, A.; Weinkauf, S.; Vekilov, P. G. A metastable prerequisite for the growth of lumazine synthase crystals. J. Am. Chem. Soc. 2005, 127, 3433−3438.  doi: 10.1021/ja043218k

    44. [44]

      Chung, S.; Shin, S. H.; Bertozzi, C. R.; De Yoreo, J. J. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics. Proc. Natl. Acad. Sci. 2010, 107, 16536−16541.  doi: 10.1073/pnas.1008280107

    45. [45]

      Auer, S.; Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 2001, 409, 1020−1023.  doi: 10.1038/35059035

    46. [46]

      Zhang, T. H.; Liu, X. Y. Nucleation: what happens at the initial stage? Angew. Chem. Int. Ed. 2009, 48, 1308−1312.  doi: 10.1002/anie.200804743

    47. [47]

      Pérez-Manzano, J.; Fernández-Blázquez, J. P.; Bello, A.; Pérez, E. Liquid-crystalline copolymers of bibenzoate and terephthalate units. Polym. Bull. 2006, 56, 571−577.  doi: 10.1007/s00289-006-0520-8

    48. [48]

      Hu, Y. S.; Hiltner, A.; Baer, E. Solid state structure and oxygen transport properties of copolyesters based on smectic poly(hexamethylene 4,4′-bibenzoate). Polymer 2006, 47, 2423−2433.  doi: 10.1016/j.polymer.2006.01.089

    49. [49]

      Fernández-Blázquez, J. P.; Pérez-Manzano, J.; Bello, A.; Pérez, E. The two crystallization modes of mesophase forming polymers. Macromolecules 2007, 40, 1775−1778.  doi: 10.1021/ma062788x

    50. [50]

      Heck, B.; Perez, E.; Strobl, G. Two competing crystallization modes in a smectogenic polyester. Macromolecules 2010, 43, 4172−4183.  doi: 10.1021/ma100113k

    51. [51]

      Jin, J. I.; Kang, C. S. Thermotropic main chain polyesters. Prog. Polym. Sci. 1997, 22, 937−973.  doi: 10.1016/S0079-6700(97)00013-0

    52. [52]

      Watanabe, J.; Hayashi, M. Thermotropic liquid crystals of polyesters having a mesogenic p,p′-bibenzoate unit. 1. Smectic A mesophase properties of polyesters composed of p,p'-bibenzoic acid and alkylene glycols. Macromolecules 1988, 21, 278−280.  doi: 10.1021/ma00179a059

    53. [53]

      Watanabe, J.; Hayashi, M. Thermotropic liquid crystals of polyesters having a mesogenic p,p'-bibenzoate unit. 2. X-ray study on smectic mesophase structures of BB-5 and BB-6. Macromolecules 1989, 22, 4083−4088.  doi: 10.1021/ma00200a046

    54. [54]

      Bello, A.; Pereña, J. M.; Pérez, E.; Benavente, R. Thermotropic liquid crystal polyesters derived from 4,4′-biphenyldicarboxylic acid and oxyalkylene spacers. Macromol. Symp. 1994, 84, 297−306.  doi: 10.1002/masy.19940840131

    55. [55]

      Chen, D.; Zachmann, H. G. Glass transition temperature of copolyesters of PET, PEN and PHB as determined by dynamic mechanical analysis. Polymer 1991, 32, 1612−1621.  doi: 10.1016/0032-3861(91)90396-Z

    56. [56]

      Watanabe, J.; Hasayashi, M.; Nakata, Y.; Niori, T.; Tokita, M. Smectic liquid crystals in main-chain polymers. Prog. Polym. Sci. 1997, 22, 1053−1087.  doi: 10.1016/S0079-6700(97)00016-6

    57. [57]

      Martínez-Gómez, A.; Encinar, M.; Fernández-Blázquez, J. P.; Rubio, R. G.; Pérez, E. Liquid crystalline polymers. Springer, Berlin, 2016, p. 453−476.

    58. [58]

      Keller, A.; Hikosaka, M.; Rastogi, S.; Toda, A.; Barham, P. J.; Goldbeck-Wood, G. An approach to the formation and growth of new phases with application to polymer crystallization: effect of finite size, metastability, and Ostwald's rule of stages. J. Mater. Sci. 1994, 29, 2579−2604.  doi: 10.1007/BF00356806

    59. [59]

      Keller, A.; Cheng, S. Z. D. The role of metastability in polymer phase transitions. Polymer 1998, 39, 4461−4487.  doi: 10.1016/S0032-3861(97)10320-2

    60. [60]

      Cheng, S. Z. D.; Zhu, L.; Y. Li, C.; Honigfort, P. S.; Keller, A. Size effect of metastable states on semicrystalline polymer structures and morphologies. Thermochim. Acta 1999, 332, 105−113.  doi: 10.1016/S0040-6031(99)00065-9

    61. [61]

      Cheng, S. Z. D. Phase transitions in polymers. Elsevier, Amsterdam, 2008.

    62. [62]

      Cavallo, D.; Mileva, D.; Portale, G.; Zhang, L.; Balzano, L.; Alfonso, G. C.; Androsch, R. Mesophase-mediated crystallization of poly(butylene-2,6-naphthalate): an example of Ostwald’s rule of stages. ACS Macro Lett. 2012, 1, 1051−1055.  doi: 10.1021/mz300349z

    63. [63]

      Achilias, D. S.; Papageorgiou, G. Z.; Karayannidis, G. P. Evaluation of the isoconversional approach to estimating the Hoffman-Lauritzen parameters from the overall rates of non-isothermal crystallization of polymers. Macromol. Chem. Phys. 2005, 206, 1511−1519.  doi: 10.1002/macp.200500175

    64. [64]

      Schick, C.; Mathot, V. Fast scanning calorimetry. Springer, Berlin, 2016.

    65. [65]

      Toda, A.; Androsch, R.; Schick, C. Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer 2016, 91, 239−263.  doi: 10.1016/j.polymer.2016.03.038

    66. [66]

      Androsch, R.; Soccio, M.; Lotti, N.; Jehnichen, D.; Göbel, M.; Schick, C. Enthalpy of formation and disordering temperature of transient monotropic liquid crystals of poly(butylene 2,6-naphthalate). Polymer 2018, 158, 77−82.  doi: 10.1016/j.polymer.2018.10.037

    67. [67]

      Cheng, S. Z. Phase transitions in polymers: the role of metastable states. Elsevier, Amsterdam, 2008, p. 25.

    68. [68]

      Singh, S. Liquid crystals fundamentals. World Scientific, New Jersey, 2002, p. 58

    69. [69]

      de Gennes, P. G.; Prost, J. The physics of liquid crystals. Oxford University Press, New York, 1993, p. 58.

    70. [70]

      Sackmann, H.; Demus, D. The polymorphism of liquid crystals. Mol. Cryst. 1966, 2, 81−102.  doi: 10.1080/15421406608083062

    71. [71]

      Nehring, J.; Saupe, A. On the schlieren texture in nematic and smectic liquid crystals. J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys. 1972, 68, 1−15.  doi: 10.1039/f29726800001

    72. [72]

      Demus, D. Schlieren textures in smectic liquid crystals. Kristall und Technik 1975, 10, 933−946.  doi: 10.1002/crat.19750100903

    73. [73]

      Jakeways, R.; Ward, I. M.; Wilding, M. A.; Hall, I. H.; Desborough, I. J.; Pass, M. G. Crystal deformation in aromatic polyesters. J. Polym. Sci., Part B: Polym. Phys. 1975, 13, 799−813.  doi: 10.1002/pol.1975.180130412

    74. [74]

      Sun, Y. M.; Wang, C. S. Novel copolyesters containing naphthalene structure. I. From bis(hydroxyalkyl)naphthalate and bis[4-(2-hydroxyethoxy)aryl] compounds. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 1783−1792.  doi: 10.1002/(SICI)1099-0518(19960715)34:9<1783::AID-POLA16>3.0.CO;2-2

    75. [75]

      Zhuravlev, E.; Schmelzer, J. W.; Abyzov, A. S.; Fokin, V. M.; Androsch, R.; Schick, C. Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst. Growth Des. 2015, 15, 786−798.  doi: 10.1021/cg501600s

    76. [76]

      Androsch, R.; Iqbal, H. N.; Schick, C. Non-isothermal crystal nucleation of poly(L-lactic acid). Polymer 2015, 81, 151−158.  doi: 10.1016/j.polymer.2015.11.006

    77. [77]

      Salmerón Sánchez, M.; Mathot, V. B.; Vanden Poel, G.; Gómez Ribelles, J. L. Effect of the cooling rate on the nucleation kinetics of poly(L-lactic acid) and its influence on morphology. Macromolecules 2007, 40, 7989−7997.  doi: 10.1021/ma0712706

    78. [78]

      Papageorgiou, G. Z.; Tsanaktsis, V.; Bikiaris, D. N. Crystallization of poly(butylene-2,6-naphthalate-co-butylene adipate) copolymers: regulating crystal modification of the polymorphic parent homopolymers and biodegradation. CrystEngComm 2014, 16, 7963−7978.  doi: 10.1039/C4CE00651H

    79. [79]

      Ding; Q.; Soccio, M.; Lotti, N.; Mahmood, N.; Cavallo, D.; Androsch, R. Crystallization of poly(butylene 2,6-naphthalate) containing diethylene 2,6-naphthalate constitutional defects. Polym. Crys. 2019, 2, e10044.  doi: 10.1002/pcr2.10044

  • 加载中
    1. [1]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    2. [2]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    3. [3]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    5. [5]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    6. [6]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    7. [7]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    8. [8]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    9. [9]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    10. [10]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    11. [11]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    12. [12]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    13. [13]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    14. [14]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    15. [15]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    16. [16]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    19. [19]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    20. [20]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

Metrics
  • PDF Downloads(0)
  • Abstract views(4809)
  • HTML views(305)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return