Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction
English
Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction
-
-
-
[1]
Rühe, J.; Ballauff, M.; Biesalski, M.; Dziezok, P.; Gröhn, F.; Johannsmann, D.; Houbenov, N.; Hugenberg, N.; Konradi, R.; Minko, S.; Motornov, M.; Netz, R. R.; Schmidt, M.; Seidel, C.; Stamm, M.; Stephan, T.; Usov, D.; Zhang, H. Polyelectrolyte brushes. Adv. Polym. Sci. 2004, 165, 79−150.
-
[2]
Hao, Q. H.; Zheng, Z.; Xia, G.; Tan, H. G. Brownian dynamics simulations of rigid polyelectrolyte chains grafting to spherical colloid. Chinese J. Polym. Sci. 2018, 36, 791−798. doi: 10.1007/s10118-018-2042-x
-
[3]
Jaquet, B.; Wei, D.; Reck, B.; Reinhold, F.; Zhang, X. Y.; Wu, H.; Morbidelli, M. Stabilization of polymer colloid dispersions with pH-sensitive poly-acrylic acid brushes. Colloid Polym. Sci. 2013, 291, 1659−1667. doi: 10.1007/s00396-013-2900-6
-
[4]
Zhang, X.; Yang, P. P.; Dai, Y. L.; Ma, P. A.; Li, X. J.; Cheng, Z. Y.; Hou, Z. Y.; Kang, X. J.; Li, C. X.; Lin, J. Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater. 2013, 23, 4067−4078. doi: 10.1002/adfm.201300136
-
[5]
Kreer, T. Polymer-brush lubrication: a review of recent theoretical advances. Soft Matter 2016, 12, 3479−3501. doi: 10.1039/C5SM02919H
-
[6]
ShamsiJazeyi, H.; Miller, C. A.; Wong, M. S.; Tour, J. M.; Verduzco, R. Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 2014, 134, 40576.
-
[7]
Zhulina, E.; Singh, C.; Balazs, A. C. Behavior of tethered polyelectrolytes in poor solvents. J. Chem. Phys. 1998, 108, 1175−1183. doi: 10.1063/1.475498
-
[8]
Tagliazucchi, M.; Cruz, M. O. D. L.; Szleifer, I. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions. Proc. Natl. Acad. Sci. 2010, 107, 5300−5305. doi: 10.1073/pnas.0913340107
-
[9]
Tagliazucchi, M.; Calvo, E. J.; Szleifer, I. Molecular modeling of responsive polymer films. AIChE J. 2010, 56, 1952−1959.
-
[10]
Brettmann, B.; Pincus, P.; Tirrell, M. Lateral structure formation in polyelectrolyte brushes induced by multivalent ions. Macromolecules 2017, 50, 1225−1235. doi: 10.1021/acs.macromol.6b02563
-
[11]
Günther, J. U.; Ahrens, H.; Förster, S.; Helm, C. A. Bundle formation in polyelectrolyte brushes. Phys. Rev. Lett. 2008, 101, 258303. doi: 10.1103/PhysRevLett.101.258303
-
[12]
Yamada, T.; Kokado, K.; Higaki, Y.; Takahara, A.; Sada, K. Preparation and morphology variation of lipophilic polyelectrolyte brush functioning in nonpolar solvents. Chem. Lett. 2014, 43, 1300−1302. doi: 10.1246/cl.140341
-
[13]
Bracha, D.; Bar-Ziv, R. H. Dendritic and nanowire assemblies of condensed DNA polymer brushes. J. Am. Chem. Soc. 2014, 136, 4945−4953. doi: 10.1021/ja410960w
-
[14]
Yu, J.; Jackson, N. E.; Xu, X.; Brettmann, B. K.; Ruths, M.; Pablo, J. J. D.; Tirrell, M. Multivalent ions induce lateral structural inhomogeneities in polyelectrolyte brushes. Sci. Adv. 2017, 3, 1497. doi: 10.1126/sciadv.aao1497
-
[15]
Carrillo, J. M. Y.; Dobrynin, A. V. Morphologies of planar polyelectrolyte brushes in a poor solvent: molecular dynamics simulations and scaling analysis. Langmuir 2009, 25, 13158−13168. doi: 10.1021/la901839j
-
[16]
He, G. L.; Merlitz, H.; Sommer, J. U. Molecular dynamics simulations of polyelectrolyte brushes under poor solvent conditions: Origins of bundle formation. J. Chem. Phys. 2014, 140, 104911. doi: 10.1063/1.4867466
-
[17]
Jackson, N. E.; Brettmann, B. K.; Vishwanath, V.; Tirrell, M.; Pablo, J. J. D. Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes. ACS Macro Lett. 2017, 6, 155−160. doi: 10.1021/acsmacrolett.6b00837
-
[18]
Sandberg, D. J.; Carrillo, J. M. Y.; Dobrynin A. V. Molecular dynamics simulations of polyelectrolyte brushes: from single chains to bundles of chains. Langmuir 2007, 23, 12716−12728. doi: 10.1021/la702203c
-
[19]
Samokhina, L.; Schrinner, M.; Ballauff, M. Binding of oppositely charged surfactants to spherical polyelectrolyte brushes: a study by cryogenic transmission electron microscopy. Langmuir 2007, 23, 3615−3619. doi: 10.1021/la063178t
-
[20]
Chen, Q.; Bae, S. C.; Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381−384. doi: 10.1038/nature09713
-
[21]
Yang, S. W.; Gao, L. Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 2006, 128, 9330−9331. doi: 10.1021/ja063359h
-
[22]
Choueiri, R. M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E. M.; Querejeta-Fernández, A.; Han, L.; Xin, H. L.; Gang, O.; Zhulina, E. B.; Rubinstein, M.; Kumacheva, E. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538, 79−83. doi: 10.1038/nature19089
-
[23]
Kravchenko, V. S.; Potemkin, I. I. Self-assembly of rarely polymer-grafted nanoparticles in dilute solutions and on a surface: from non-spherical vesicles to graphene-like sheets. Polymer 2018, 142, 23−32. doi: 10.1016/j.polymer.2018.03.019
-
[24]
Ross, M. B.; Ku, J. C.; Vaccarezza. V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453−458. doi: 10.1038/nnano.2015.68
-
[25]
Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111, 3736−3827. doi: 10.1021/cr1004452
-
[26]
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1−19. doi: 10.1006/jcph.1995.1039
-
[27]
Csajka, F. S.; Seidel, C. Strongly charged polyelectrolyte brushes: A molecular dynamics study. Macromolecules 2000, 33, 2728−2739. doi: 10.1021/ma990096l
-
[28]
Hao, Q. H.; Xia, G.; Tan, H. G.; Chen, E. Q.; Yang, S. Surface morphologies of spherical polyelectrolyte brushes induced by trivalent salt ions. Phys. Chem. Chem. Phys. 2018, 20, 26542−26551. doi: 10.1039/C8CP04235G
-
[29]
Hoda, N.; Larson, R. G. Explicit- and implicit-solvent molecular dynamics simulations of complex formation between polycations and polyanions. Macromolecules 2009, 42, 8851−8863. doi: 10.1021/ma901632c
-
[30]
Huißmann, S.; Likos, C. N.; Blaak, R. Explicit vs implicit water simulations of charged dendrimers. Macromolecules 2012, 45, 2562−2569. doi: 10.1021/ma202520d
-
[31]
Carrillo, J. M. Y.; Dobrynin, A. V. Polyelectrolytes in salt solutions: Molecular dynamics simulations. Macromolecules 2011, 44, 5798−5816. doi: 10.1021/ma2007943
-
[32]
Grest, G. S.; Kremer, K.; Witten, T. A. Structure of many-arm star polymers: a molecular dynamics simulation. Macromolecules 1987, 20, 1376. doi: 10.1021/ma00172a035
-
[33]
Ghelichi, M.; Qazvini, N. T. Self-organization of hydrophobic-capped triblock copolymers with polyelectrolyte midblock: A coarse-grained molecular dynamics simulation study. Soft Matter 2016, 12, 4611−4620. doi: 10.1039/C6SM00414H
-
[34]
Mei, Y.; Hoffmann, M.; Ballauff, M.; Jusufi, A. Spherical polyelectrolyte brushes in the presence of multivalent counterions: the effect of fluctuations and correlations as determined by molecular dynamics simulations. Phys. Rev. E 2008, 77, 031805. doi: 10.1103/PhysRevE.77.031805
-
[35]
Jusufi, A.; Likos, C. N.; Löwen, H. Counterion-induced entropic interactions in solutions of strongly stretched, osmotic polyelectrolyte stars. J. Chem. Phys. 2002, 116, 11011−11027. doi: 10.1063/1.1480007
-
[36]
Pollock, E. L.; Glosli, J. Comments on P3M, FMM, and the Ewald method for large periodic coulombic systems. Comput. Phys. Commun. 1996, 95, 93−110. doi: 10.1016/0010-4655(96)00043-4
-
[37]
Lane, J. M. D.; Grest, G. S. Spontaneous asymmetry of coated spherical nanoparticles in solution and at liquid-vapor interfaces. Phys. Rev. Lett. 2010, 104, 235501−235504. doi: 10.1103/PhysRevLett.104.235501
-
[38]
Chi, P.; Li, B. H.; Shi, A. C. Conformation transitions of a polyelectrolyte chain: a replica-exchange Monte-Carlo study. Phys. Rev. E 2011, 84, 021804.
-
[39]
Chi, P.; Wang, Z.; Yin Y. H.; Li, B. H. Finite-length effects on the coil-globule transition of a strongly charged polyelectrolyte chain in a salt-free solvent. Phys. Rev. E 2013, 87, 042608. doi: 10.1103/PhysRevE.87.042608
-
[1]
计量
- PDF下载量: 0
- 文章访问数: 4913
- HTML全文浏览量: 139