Citation: Hua-Gen Xu, Mu-Chao Qu, Ya-Min Pan, Dirk W. Schubert. Conductivity of Poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black Ternary Composite Films[J]. Chinese Journal of Polymer Science, ;2020, 38(3): 288-297. doi: 10.1007/s10118-020-2349-2 shu

Conductivity of Poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black Ternary Composite Films

  • Corresponding author: Hua-Gen Xu, huagen.xu@fau.de
  • Received Date: 4 June 2019
    Revised Date: 19 August 2019
    Available Online: 7 November 2019

  • Poly(methyl methacrylate) (PMMA)/polystyrene (PS)/carbon black (CB) and poly(ethyl methacrylate) (PEMA)/PS/CB ternary composite films were obtained using solution casting technique to investigate double percolation effect. In both PMMA/PS/CB and PEMA/PS/CB ternary composite films, the CB particles prefer to locate into PS phase based on the results of calculating wetting coefficient, which is also confirmed by SEM images. The conductivity of the films was investigated, and the percolation threshold (ϕc) of both ternary composite films with different polymer blend ratios was determined by fitting the McLachlan GEM equation. Conductivity of PMMA/PS/CB ternary composite films showed a typical double percolation effect. However, due to the double emulsion structure of PEMA/PS polymer blends, the PEMA/PS/CB ternary composite films (PEMA/PS = 50/50) showed a higher ϕc, even CB only located in PS phase, which conflicts with the double percolation effect. A schematic diagram combined with SEM images was proposed to explain this phenomenon.
  • 加载中
    1. [1]

      Liu, X. H.; Li, C. H.; Pan, Y. M.; Schubert, D. W.; Liu, C. T. Shear-induced rheological and electrical properties of molten poly (methyl methacrylate)/carbon black nanocomposites. Compos. Part B Eng. 2019, 164, 37−44.  doi: 10.1016/j.compositesb.2018.11.054

    2. [2]

      Gulrez, S. K.; Ali Mohsin, M. E.; Shaikh, H.; Anis, A.; Pulose, A. M.; Yadav, M. K.; Qua, E. H.; Al-Zahrani, S. M. A review on electrically conductive polypropylene and polyethylene. Polym. Compos. 2014, 35, 900−914.  doi: 10.1002/pc.22734

    3. [3]

      Krause, B.; Boldt, R.; Häußler, L.; Pötschke, P. Ultralow percolation threshold in polyamide 6.6/MWCNT composites. Compos. Sci. Technol. 2015, 114, 119−125.  doi: 10.1016/j.compscitech.2015.03.014

    4. [4]

      Zhang, C.; Liu, X. H.; Liu, H.; Wang, Y. M.; Guo, Z. H.; Liu, C. T. Multi-walled carbon nanotube in a miscible PEO/PMMA blend: thermal and rheological behavior. Polym. Test. 2019, 75, 367−372.  doi: 10.1016/j.polymertesting.2019.03.003

    5. [5]

      Zhang, F. F; Liu, X. H.; Zheng, G. Q.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Facile route to improve the crystalline memory effect: electrospun composite fiber and annealing. Macromol. Chem. Phys. 2018, 219, 1800236.  doi: 10.1002/macp.201800236

    6. [6]

      Al-Saleh, M. H.; Sundararaj, U. An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Compos. Part A Appl. S. 2008, 39, 284−293.  doi: 10.1016/j.compositesa.2007.10.010

    7. [7]

      Starý, Z.; Krückel, J.; Weck, C.; Schubert, D. W. Rheology and conductivity of carbon fibre composites with defined fibre lengths. Compos. Sci. Technol. 2013, 85, 58−64.  doi: 10.1016/j.compscitech.2013.06.006

    8. [8]

      Huang, J. C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 2002, 21, 299−313.  doi: 10.1002/adv.10025

    9. [9]

      Chen, J. W.; Cui, X. H.; Sui, K. Y.; Zhu, Y. T.; Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol. 2017, 140, 99−105.  doi: 10.1016/j.compscitech.2016.12.029

    10. [10]

      Pan, Y. M.; Liu, X. H.; Hao, X. Q.; Starý, Z.; Schubert, D. W. Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology. Eur. Polym. J. 2016, 78, 106−115.  doi: 10.1016/j.eurpolymj.2016.03.019

    11. [11]

      Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull. 1991, 25, 265−271.  doi: 10.1007/BF00310802

    12. [12]

      Gubbels, F.; Jérôme, R.; Teyssie, P.; Vanlathem, E.; Deltour, R.; Calderone, A.; Parente, V. Brédas, J. L. Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites. Macromolecules 1994, 27, 1972−1974.  doi: 10.1021/ma00085a049

    13. [13]

      Foulger, S. H. Reduced percolation thresholds of immiscible conductive blends of poly(ethylene-co-vinyl acetate) and high density polyethylene. Conference on electrical insulation and dielectric phenomena. IEEE Annual Report. 1998, Vol. 1, p. 282−287.

    14. [14]

      Xu, Z. B.; Zhao, C.; Gu, A. J; Fang, Z. P.; Tong, L. F. Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black. J. Appl. Polym. Sci. 2007, 106, 2008−2017.  doi: 10.1002/app.26827

    15. [15]

      Cheah, K.; Forsyth, M.; Simon, G. P. Processing and morphological development of carbon black filled conducting blends using a binary host of poly(styrene-co-acrylonitrile) and poly(styrene). J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 3106−3119.

    16. [16]

      Calberg, C.; Blacher, S.; Gubbels, F.; Brouers, F.; Deltour, R.; Jérôme, R. Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J. Phys. D Appl. Phys. 1999, 32, 1517.  doi: 10.1088/0022-3727/32/13/313

    17. [17]

      Mamunya, Y.; Levchenko, V.; Boiteux, G.; Seytre, G.; Zanoaga, M.; Tanasa, F.; Lebedev, E. Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym. Compos. 2016, 37, 2467−2477.  doi: 10.1002/pc.23434

    18. [18]

      Nasti, G.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V. Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer 2016, 99, 193−203.  doi: 10.1016/j.polymer.2016.06.058

    19. [19]

      Chen, Y.; Yang, Q.; Huang, Y. J.; Liao, X.; Niu, Y. H. Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing. Polymer 2015, 79, 159−170.  doi: 10.1016/j.polymer.2015.10.027

    20. [20]

      Dil, E. J.; Favis, B. D. Localization of micro and nano-silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system. Polymer 2015, 77, 156−166.  doi: 10.1016/j.polymer.2015.08.063

    21. [21]

      Harrats, C.; Groeninckx, G.; Thomas, S. Micro-and nanostructured multiphase polymer blend systems: phase morphology and interfaces. CRC press, 2015.

    22. [22]

      Utrachi, L. A. Polymer alloys and blends. 1990, Chapter 3.

    23. [23]

      Paul, D. R.; Barlow, J. W. Polymer blends. J. Macromol. Sci. R. M. C. 1980, 18, 109−168.  doi: 10.1080/00222358008080917

    24. [24]

      Kim, J. H.; Park, D. S.; Kim, C. K. Characterization of the interaction energies for polystyrene blends with various methacrylate polymers. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 2666−2677.  doi: 10.1002/1099-0488(20001015)38:20<2666::AID-POLB70>3.0.CO;2-P

    25. [25]

      Schubert, D. W.; Stamm, M.; Müller, A. H. E. Neutron reflectometry studies on the interfacial width between polystyrene and various poly(alkylmethacrylates). Polym. Eng. Sci. 1999, 39, 1501−1507.  doi: 10.1002/pen.11542

    26. [26]

      Voulgaris, D.; Petridis, D. Emulsifying effect of dimethyldioctadecylammonium-hectorite in polystyrene/poly(ethyl methacrylate) blends. Polymer 2002, 43, 2213−2218.  doi: 10.1016/S0032-3861(02)00039-3

    27. [27]

      Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol. 2016, 123, 17−31.  doi: 10.1016/j.compscitech.2015.11.029

    28. [28]

      Radzuan, N. A. M.; Sulong, A. B.; Sahari, J. A review of electrical conductivity models for conductive polymer composite. Int. J Hydrogen Energ. 2017, 42, 9262−9273.  doi: 10.1016/j.ijhydene.2016.03.045

    29. [29]

      McLachlan, D. S.; Blaszkiewicz, M.; Newnham, R. E. Electrical resistivity of composites. J. Am. Ceram. Soc. 1990, 73, 2187−2203.  doi: 10.1111/j.1151-2916.1990.tb07576.x

    30. [30]

      Sahini, M.; Sahimi, M. Applications of percolation theory. CRC Press, 2014.

    31. [31]

      Liu, X. H.; Krückel, J.; Zheng, G. Q.; Schubert, D. W. Mapping the electrical conductivity of poly (methyl methacrylate)/carbon black composites prior to and after shear. ACS Appl. Mater. Interfaces 2013, 5, 8857−8860.  doi: 10.1021/am4031517

    32. [32]

      Starý, Z. Thermodynamics and morphology and compatibilization of polymer blends. in Characterization of polymer blends. Eds. by Thomas, S.; Grohens, Y.; Jyotishkumar, P. Wiley-VCH Verlag GmbH & Co. KGaA, 2014, 93−132.

    33. [33]

      Pajula, K.; Taskinen, M.; Lehto, V. P.; Ketolainen, J.; Korhonen, O. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Mol. Pharmaceut. 2010, 7, 795−804.  doi: 10.1021/mp900304p

    34. [34]

      Gedde, U. W. Polymer physics. Springer Science & Business Media, 2013.

    35. [35]

      Sammler, R. L.; Dion, R. P.; Carriere, C. J.; Cohen, A. Compatibility of high polymers probed by interfacial tension. Rheol. Acta 1992, 31, 554−564.  doi: 10.1007/BF00367010

    36. [36]

      Schubert, D. W.; Stamm, M. Influence of chain length on the interface width of an incompatible polymer blend. EPL 1996, 35, 419.  doi: 10.1209/epl/i1996-00130-3

    37. [37]

      Wu, S. Polymer interfaces and adhesion. Marcel Dekker, New York, 1982.

    38. [38]

      Deng, H.; Lin, L.; Ji, M. Z.; Zhang, S. M.; Yang, M. B.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 2014, 39, 627−655.  doi: 10.1016/j.progpolymsci.2013.07.007

    39. [39]

      Baudouin, A. C.; Devaux, J.; Bailly, C. Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer. Polymer 2010, 51, 1341−1354.  doi: 10.1016/j.polymer.2010.01.050

    40. [40]

      www.surface-tension.desolid-surface-energy.htm

    41. [41]

      Cao, Q.; Song, Y. H.; Tan, Y. Q.; Zheng, Q. Conductive and viscoelastic behaviors of carbon black filled polystyrene during annealing. Carbon 2010, 48, 4268−4275.  doi: 10.1016/j.carbon.2010.07.036

    42. [42]

      Pan, Y. M.; Liu, X. H.; Kaschta, J.; Liu, C. T.; Schubert, D. W. Reversal phenomena of molten immiscible polymer blends during creep-recovery in shear. J. Rheol. 2017, 61, 759−767.  doi: 10.1122/1.4985005

    43. [43]

      Liu, T.; Huang, K. Q.; Li, L. W.; Gu, Z. P.; Liu, X. H.; Peng, X. F.; Kuang, T. R. High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: fabrication, in vitro and in vivo biocompatibility evaluation. Compos. Sci. Technol. 2019, 175, 100−110.  doi: 10.1016/j.compscitech.2019.03.012

    44. [44]

      Elias, L.; Fenouillot, F.; Majesté, J. C.; Alcouffe, P.; Cassagnau, P. Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 2008, 49, 4378−4385.  doi: 10.1016/j.polymer.2008.07.018

    45. [45]

      Fenouillot, F.; Cassagnau, P.; Majesté, J. C. Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 2009, 50, 1333−1350.  doi: 10.1016/j.polymer.2008.12.029

  • 加载中
    1. [1]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    2. [2]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    3. [3]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    4. [4]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    5. [5]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    6. [6]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    7. [7]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    8. [8]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    9. [9]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    10. [10]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    11. [11]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    12. [12]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    13. [13]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    14. [14]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    15. [15]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    16. [16]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    17. [17]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    18. [18]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    19. [19]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    20. [20]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

Metrics
  • PDF Downloads(0)
  • Abstract views(958)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return