Citation: Simona Losio, Laura Boggioni, Massimiliano Cornelio, Abbas Razavi, Incoronata Tritto. Ethylene-Propene Copolymerization with C1-symmetric ansa-Fluorenyl-zirconocene Catalysts: Effects of Catalyst Structure and Comonomer on Molar Mass[J]. Chinese Journal of Polymer Science, ;2020, 38(3): 220-230. doi: 10.1007/s10118-020-2348-3 shu

Ethylene-Propene Copolymerization with C1-symmetric ansa-Fluorenyl-zirconocene Catalysts: Effects of Catalyst Structure and Comonomer on Molar Mass

  • Corresponding author: Incoronata Tritto, tritto@ismac.cnr.it
  • Received Date: 28 June 2019
    Revised Date: 17 August 2019
    Accepted Date: 29 August 2019
    Available Online: 7 November 2019

  • Ethylene-propene copolymers have been synthesized by three C1-symmetric metallocene molecules ( 1 , 2 , and 3 ), having tert-butyl substituents on the Cp moiety, on the fluorenyl moiety, or on both moieties, and methylaluminoxane (MAO) at different polymerization temperatures and monomer concentrations. Copolymers were investigated by 13C-NMR, 1H-NMR, and SEC analyses. A relationship was found between [EEE]/[E] ratios and copolymer molar masses in each series: the higher the [EEE]/[E] ratio, the lower the copolymer molar mass. At parity of [EEE]/[E] ratio, copolymer molar mass follows the order 1 >> 3 > 2 . Chain end group analysis reveals that copolymers mainly terminate when propene is the last inserted unit, confirming that it is the greater facility of Mt-P-E-poly(E-co-P) to terminate that influences the copolymer molar mass. Among the catalysts considered, catalyst 1 , which gives syndiospecific polypropene, gives greater activities, comonomer incorporation, and molar masses. Catalyst 3 , which gives isospecific polypropene, in copolymerization performs better than 2 , having the same bridge, with respect to activities, ethylene content, and molar masses. The good performance of this catalyst arises from the not necessity of polymer chain to back skip when ethylene is the last inserted unit.
  • 加载中
    1. [1]

      Sturzel, M.; Mihan, S.; Mulhaupt, R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev. 2016, 116, 1398−1433.  doi: 10.1021/acs.chemrev.5b00310

    2. [2]

      Busico, V. Metal-catalysed olefin polymerisation into the new millennium: a perspective outlook. Dalton Trans. 2009, 8794−8802.

    3. [3]

      Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. Chem. Int. Ed. 1995, 34, 1143−1170.  doi: 10.1002/anie.199511431

    4. [4]

      Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Selectivity in propene polymerization with metallocene catalysts. Chem. Rev. 2000, 100, 1253−1345.  doi: 10.1021/cr9804691

    5. [5]

      Razavi, A.; Thewalt, U. Site selective ligand modification and tactic variation in polypropylene chains produced with metallocene catalysts. Coord. Chem. Rev. 2006, 250, 155−169.  doi: 10.1016/j.ccr.2005.07.006

    6. [6]

      Kaminsky, W.; Sperber, O.; Werner, R. Pentalene substituted metallocene complexes for olefin polymerization. Coord. Chem. Rev. 2006, 250, 110−117.  doi: 10.1016/j.ccr.2005.05.027

    7. [7]

      Spalech. W.; Kuber, F.; Winter, A.; Rohrmann, J.; Bachmann, B.; Antberg, M.; Dolle, V.; Paulus, E. F. The influence of aromatic substituents on the polymerization behavior of bridged zirconocene catalysts. Organometallics 1994, 13, 954−963.  doi: 10.1021/om00015a032

    8. [8]

      Spaleck, W.; Antberg, M.; Rohrmann, J.; Winter, A.; Bachmann, B.; Krprof, B.; Behm, J.; Herrmann, A. W. High-molecular-weight polypropylene through specifically designed zirconocene catalysts. Angew. Chem. 1992, 31, 1347−1350.  doi: 10.1002/anie.199213471

    9. [9]

      Stehling, U.; Diebold, J.; Kirsten, R.; Roll, W.; Brintzinger, H. H.; Jungling, S.; Mulhaupt, R.; Langahuster, F. ansa-Zirconocene polymerization catalysts with annelated ring ligands-effects on catalytic activity and polymer-chain lenght. Organometallics 1994, 13, 964−970.  doi: 10.1021/om00015a033

    10. [10]

      Kirillov, E.; Roisnel, T.; Razavi, A.; Carpentier, J. F. Group 4 post-metallocene complexes incorporating tridentate silyl-substituted bis(naphthoxy)pyridine and bis(naphthoxy)thiophene ligands: probing systems for “oscillating” olefin polymerization catalysis. Organometallics 2009, 28, 5036−5051.  doi: 10.1021/om900550s

    11. [11]

      Fan, W.; Waymouth, R. M. Sequence and stereoselectivity of the C1-symmetric metallocene Me2Si(1-(4,7-Me2Ind))(9-Flu)ZrCl2. Macromolecules 2003, 36, 3010−3014.  doi: 10.1021/ma020037z

    12. [12]

      Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. Syndiospecific propylene polymerizations with group-4 metallocenes. J. Am. Chem. Soc. 1988, 110, 6255−6256.  doi: 10.1021/ja00226a056

    13. [13]

      Razavi, A.; Atwood, J. L. Preparation and crystal-structures of the complexes (η5-C5H3Me-CMe2-η5-C13H8)MCL2 (M = Zr or Hf)—mechanistic aspects of the catalytic formation of a syndiotactic-isotactic stereoblock-type polypropylene. J. Organomet. Chem. 1995, 497, 105−111.  doi: 10.1016/0022-328X(95)00115-7

    14. [14]

      Razavi, A.; Atwood, J. L. Preparation and crystal-structures of the complexes (η5-C5H4CPH2-η5-C13H8)MCL2 (M = Zr, Hf) and the catalytic formation of high molecular weight-high tacticity-syndiotactic polypropylene. J. Organomet. Chem. 1996, 520, 115−120.  doi: 10.1016/0022-328X(96)06306-1

    15. [15]

      Ewen, J. A.; Elder, M. J.; Jones, R. L.; Curtis, S.; Cheng, H. N. In Catalytic olefin polymerization, studies in surface science and catalysis. Eds. Keii, T. and Soga, K. Elsewier, New York, 1990, p. 439.

    16. [16]

      Razavi, A.; Peters, L.; Nafpliotis, L.; Vereecke, D.; Den Dauw, K. The geometry of the site and its relevance for chain migration and stereospecificity. Macromol. Symp. 1995, 89, 345−367.  doi: 10.1002/masy.19950890133

    17. [17]

      Miller, S. A.; Bercaw, J. E. Mechanism of isotactic polypropylene formation with C1-symmetric metallocene catalysts. Organometallics 2006, 25, 3576−3592.  doi: 10.1021/om050841k

    18. [18]

      Boggioni, L.; Cornelio, M.; Losio, S.; Razavi, A.; Tritto I. Propene polymerization with C1-symmetric fluorenyl-metallocene catalysts. Polymers 2017, 9, 181−199.  doi: 10.3390/polym9050181

    19. [19]

      Spaleck, W.; Antberg, M.; Dolle, V.; Klein, R.; Rohrmann, J.; Winter, A. Stereorigid metallocenes—correlations between structure and behavior in homopolymerizations of propylene. J. Chem. 1990, 13, 499−503.

    20. [20]

      Reybuck, S. E.; Meyer, A.; Waymouth, R. M. Copolymerization behavior of unbridged indenyl metallocenes: substituent effects on the degree of comonomer incorporation. Macromolecules 2002, 35, 637−643.  doi: 10.1021/ma011517d

    21. [21]

      Tynys, A.; Saarinen, T.; Hakala, K.; Helaja, T.; Vanne, T.; Lehmus, P.; Löfgren, B. Ethylene-propylene copolymerisations: effect of metallocene structure on termination reactions and polymer microstructure. Macromol. Chem. Phys. 2005, 206, 1043−1056.  doi: 10.1002/macp.200400523

    22. [22]

      Yano, A.; Hasegawa, S.; Kaneko, T.; Sone, M.; Akimoto, A. Ethylene/1-hexene copolymerization with Ph2C(Cp)(Flu)ZrCl2 derivatives: correlation between ligand structure and copolymerization behavior at high temperature. Macromol. Chem. Phys. 1999, 200, 1542−1553.  doi: 10.1002/(SICI)1521-3935(19990601)200:6<1542::AID-MACP1542>3.0.CO;2-8

    23. [23]

      Suhm, J.; Schneider, M. J.; Mulhaupt, R. Influence of metallocene structures on ethene copolymerization with 1-butene and 1-octene. J. Mol. Catal. A: Chem. 1998, 128, 215−217.  doi: 10.1016/S1381-1169(97)00175-1

    24. [24]

      Schneider, M. J.; Suhm, J.; Mulhaupt, R.; Prosenc, M.; Brintzinger, H. Influence of indenyl ligand substitution pattern on metallocene-catalyzed ethene copolymerization with 1-octene. Macromolecules 1997, 30, 3164−3168.  doi: 10.1021/ma961844z

    25. [25]

      Seraidaris, T.; Löfgren, B.; Seppälä, J. V.; Kaminsky, W. Copolymerization of propene with low amounts of ethene in propene bulk phase. Polymer 2006, 47, 107−112.  doi: 10.1016/j.polymer.2005.11.010

    26. [26]

      Wang, D.; Tomasi, S.; Razavi, A.; Ziegler, T. Why do C1-symmetric ansa-zirconocene catalysts produce lower molecular weight polymers for ethylene/propylene copolymerization than for ethylene/propylene homopolymerization? Organometallics 2008, 27, 2861−2867.  doi: 10.1021/om800290n

    27. [27]

      Busico, V.; Cipullo, R.; Talarico, G.; Segre, A. L.; Caporaso, L. High-field 13C NMR characterization of ethene-1-13C/propene copolymers prepared with Cs-symmetric ansa-metallocene catalysts: a deeper insight into the regio- and stereoselectivity of syndiotactic propene polymerization. Macromolecules 1998, 31, 8720−8724.  doi: 10.1021/ma9810417

    28. [28]

      Tritto, I.; Fan, Z, Q.; Locatelli, P.; Sacchi, M. C.; Camurati.; Galimberti, M. 13C NMR-studies of ethylene-propylene copolymers prepared with homogeneous metallocene-based Ziegler-Natta catalysts. Macromolecules 1995, 28, 3342−3350.  doi: 10.1021/ma00113a039

    29. [29]

      Losio, S.; Boccia, A. C.; Boggioni, L.; Sacchi, M. C.; Ferro, D. R. Ethene/4-methyl-1-pentene copolymers by metallocene-based catalysts: exhaustive microstructural characterization by 13C NMR spectroscopy. Macromolecules 2009, 42, 6964−6971.  doi: 10.1021/ma901226g

    30. [30]

      Losio, S.; Forlini, F.; Boccia, A. C.; Sacchi, M. C. Propene/4-methyl-1-pentene copolymers by metallocene-based catalysts: first insight into 13C-NMR assignment. Macromolecules 2011, 44, 3276−3286.  doi: 10.1021/ma102924p

    31. [31]

      Tritto, I.; Boggioni, L.; Zampa, C.; Ferro, D. R. Ethylene-norbornene copolymers by Cs-symmetric metallocenes: determination of the copolymerization parameters and mechanistic considerations on the basis of tetrad analysis. Macromolecules 2005, 38, 9910−9919.  doi: 10.1021/ma051682j

    32. [32]

      Boggioni, L.; Ravasio, A.; Boccia, A. C.; Ferro, D. R.; Tritto, I. Propene-norbornene copolymers toward a description of microstructure at triad level based on assignments of 13C-NMR spectra. Macromolecules 2010, 43, 4543−4556.

    33. [33]

      Harakawa, H.; Patamma, S.; Boccia, A. C.; Boggioni, L.; Ferro, D. R.; Losio, S.; Nomura, K.; Tritto, I. Ethylene copolymerization with 4-methylcyclohexene or 1-methylcyclopentene by half-titanocene catalysts: effect of ligands and microstructural analysis of the copolymers. Macromolecules 2018, 51, 853−863.  doi: 10.1021/acs.macromol.7b02484

    34. [34]

      Carman, C. J.; Wilkes, C. E. Monomer sequence distribution in ethylene propylene elastomers I. Measurement by carbon-13 nuclear magnetic resonance spectroscopy. Rubber Chem. Technol. 1971, 44, 781−804.

    35. [35]

      Dorman, D. E.; Otocka, E. P.; Bovey, F. A. Carbon-13 observations of the nature of the short-chain branches in low-density polyethylene. Macromolecules 1972, 5, 574−577.  doi: 10.1021/ma60029a009

    36. [36]

      Randall, J. C. A review of high resolution liquid 13carbon nuclear magnetic resonance characterizations of ethylene-based polymers. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1989, C29(2&3), 201.

    37. [37]

      Kakugo, M.; Naito, Y.; Mizunuma, K.; Miyatake, T. Carbon-13 NMR determination of monomer sequence distribution in ethylene-propylene copolymers prepared with δ-titanium trichloride-diethylaluminum chloride. Macromolecules 1982, 15, 1150−1152.  doi: 10.1021/ma00232a037

    38. [38]

      Ray, G. J.; Johnson, P. E.; Knox, J. R. Carbon-13 nuclear magnetic resonance determination of monomer composition and sequence distributions in ethylene-propylene copolymers prepared with a stereoregular catalyst system. Macromolecules 1977, 10, 773−778.  doi: 10.1021/ma60058a010

    39. [39]

      Galimberti, M.; Piemontesi, F.; Mascellani, N.; Camurati, I.; Fusco, O.; Destro, M. Metallocenes for ethene/propene copolymerizations with high product of reactivity ratios. Macromolecules 1999, 32, 7968−7976.  doi: 10.1021/ma981961p

    40. [40]

      Lehmus, P.; Kokko, E.; Leino, R.; Luttikhedde, H. J. G.; Rieger, B.; Seppala, J. V. Chain end isomerization as a side reaction in metallocene-catalyzed ethylene and propylene polymerizations. Macromolecules 2000, 33, 8534−8540.  doi: 10.1021/ma0010635

    41. [41]

      Lehmus, P.; Kokko, E.; Ha1rkki, O.; Leino, R.; Luttikhedde, H. J. G.; Nasman, J. H.; Seppala, J. V. Homo- and copolymerization of ethylene and α-olefins over 1- and 2-siloxy-substituted ethylenebis(indenyl)zirconium and ethylenebis-(tetrahydroindenyl)zirconium dichlorides. Macromolecules 1999, 32, 3547−3552.  doi: 10.1021/ma981764q

    42. [42]

      Tritto, I.; Boggioni, L.; Ferro, D. R. Metallocene catalyzed ethene- and propene co-norbornene polymerization: mechanisms from a detailed microstructural analysis. Coord. Chem. Rev. 2006, 250, 212−241.  doi: 10.1016/j.ccr.2005.06.019

    43. [43]

      Resconi, L.; Camurati, I.; Sudmeijer, O. Chain transfer reactions in propylene polymerization with zirconocene catalysts. Topics in Catalysis 1999, 7, 145−163.  doi: 10.1023/A:1019115801193

    44. [44]

      Kawahara, N.; Kojoh, S.; Toda, Y.; Mizuno, A.; Kashiwa, N. The detailed analysis of the vinylidene structure of metallocene-catalyzed polypropylene. Polymer 2004, 45, 355−357.  doi: 10.1016/j.polymer.2003.11.029

    45. [45]

      Quevedo-Sanchez, B.; Henson, M. A.; Coughlin, E. B. Origin of the formation of the 4-butenyl end group in zirconocene-catalyzed propylene polymerization. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3724−3728.  doi: 10.1002/pola.21460

    46. [46]

      Resconi, L. On the mechanisms of growing-chain-end isomerization and transfer reactions in propylene polymerization with isospecific, C2-symmetric zirconocene catalysts. J. Mol. Catal. A: Chem. 1999, 146, 167−178.  doi: 10.1016/S1381-1169(99)00101-6

  • 加载中
    1. [1]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    4. [4]

      Zirui ZhuPeng LiuJinhua WangHongbin ZhangWei Luo . Effects of nano-metakaolin on the enhanced properties and microstructure development of natural hydraulic lime. Chinese Chemical Letters, 2025, 36(4): 109794-. doi: 10.1016/j.cclet.2024.109794

    5. [5]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    6. [6]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    7. [7]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    8. [8]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    9. [9]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    10. [10]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    11. [11]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    13. [13]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    14. [14]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    15. [15]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    16. [16]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    17. [17]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    18. [18]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    19. [19]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    20. [20]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

Metrics
  • PDF Downloads(0)
  • Abstract views(951)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return