Ring-opening Copolymerization of ε-Caprolactone and δ-Valerolactone Catalyzed by a 2,6-Bis(amino)phenol Zinc Complex
- Corresponding author: Su-Yun Jie, jiesy@zju.edu.cn
Citation:
Qian Hu, Su-Yun Jie, Pierre Braunstein, Bo-Geng Li. Ring-opening Copolymerization of ε-Caprolactone and δ-Valerolactone Catalyzed by a 2,6-Bis(amino)phenol Zinc Complex[J]. Chinese Journal of Polymer Science,
;2020, 38(3): 240-247.
doi:
10.1007/s10118-020-2347-4
Sangeetha, V. H.; Deka, H.; Varghese, T. O.; Nayak, S. K. State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym. Compos. 2018, 39, 81−101.
doi: 10.1002/pc.23906
Pant, H. R.; Kim, H. J.; Bhatt, L. R.; Joshi, M. K.; Kim, E. K.; Kim, J. I.; Abdal-hay, A.; Hui, K. S.; Kim, C. S. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications. Appl. Surf. Sci. 2013, 285, 538−544.
doi: 10.1016/j.apsusc.2013.08.089
Cameron, D. J. A.; Shaver, M. P. Aliphatic polyester polymer stars: Synthesis, properties and applications in biomedicine and nanotechnology. Chem. Soc. Rev. 2011, 40, 1761−1776.
doi: 10.1039/C0CS00091D
Shin, E. J.; Brown, H. A.; Gonzalez, S.; Jeong, W.; Hedrick, J. L.; Waymouth, R. M. Zwitterionic copolymerization: synthesis of cyclic gradient copolymers. Angew. Chem. Int. Ed. 2011, 50, 6388−6391.
doi: 10.1002/anie.201101853
Stirling, E.; Champouret, Y.; Visseaux, M. Catalytic metal-based systems for controlled statistical copolymerisation of lactide with a lactone. Polym. Chem. 2018, 9, 2517−2531.
doi: 10.1039/C8PY00310F
Rad'Kova, N.; Rad'Kov, V.; Cherkasov, A.; Kovylina, T.; Trifonov, A. Lanthanide bis(borohydride) complexes coordinated by tetradentate phenoxide ligand: synthesis, structure, and catalytic activity in ring-opening polymerization of rac-lactide and ε-caprolactone. Inorg. Chim. Acta 2019, 489, 132−139.
doi: 10.1016/j.ica.2019.02.014
Cho, J.; Chun, M. K.; Nayab, S.; Jeong, J. H. Synthesis and structures of copper(II) complexes containing N,N-bidentate N-substituted phenylethanamine derivatives as pre-catalysts for heterotactic-enriched polylactide. Polyhedron 2019, 163, 54−62.
doi: 10.1016/j.poly.2019.02.014
Caballero-Jiménez, D.; García-de-Jesús, O.; Lopez, N.; Reyes-Ortega, Y. Muñoz-Hernández, M. Tetranuclear complexes of group 12 and 13 supported on a polynucleating ligand and activity studies in the ROP of rac-lactide. Inorg. Chim. Acta 2019, 489, 120−125.
doi: 10.1016/j.ica.2019.02.007
Dou, J.; Zhu, D.; Zhang, W.; Wang, R.; Wang, S.; Zhang, Q.; Zhang, X.; Sun, W. H. Highly efficient iron(II) catalysts toward ring opening polymerization of ε-caprolactone through in situ initiation. Inorg. Chim. Acta 2019, 488, 299−303.
doi: 10.1016/j.ica.2019.01.040
Munzeiwa, W. A.; Nyamori, V. O.; Omondi, B. N,O-amino-phenolate Mg(II) and Zn(II) Schiff base complexes: synthesis and application in ring-opening polymerization of ε-caprolactone and lactides. Inorg. Chim. Acta 2019, 487, 264−274.
doi: 10.1016/j.ica.2018.12.028
Chen, X.; Wang, B.; Pan, L.; Li, Y. Homoleptic, bis-ligated magnesium complexes for ring-opening polymerization of lactide and lactones: synthesis, structure, polymerization behavior and mechanism studies. Appl. Organomet. Chem. 2019, 33, e4770.
doi: 10.1002/aoc.4770
Steiniger, P.; Schäfer, P. M.; Wölper, C.; Henkel, J.; Ksiazkiewicz, A. N.; Pich, A.; Herres-Pawlis, S.; Schulz, S. Synthesis, structures, and catalytic activity of homo- and heteroleptic ketoiminate zinc complexes in lactide polymerization. Eur. J. Inorg. Chem. 2018, 2018, 4014−4021.
doi: 10.1002/ejic.201800504
González, D. M.; Cisterna, J.; Brito, I.; Roisnel, T.; Hamon, J.; Manzur, C. Binuclear Schiff-base zinc(II) complexes: synthesis, crystal structures and reactivity toward ring opening polymerization of rac-lactide. Polyhedron 2019, 162, 91−99.
doi: 10.1016/j.poly.2019.01.043
Yang, Z.; Hu, C.; Duan, R.; Sun, Z.; Zhang, H.; Pang, X.; Li, L. Salen-manganese complexes and their application in the ring-opening polymerization of lactide and ε-caprolactone. Asian J. Org. Chem. 2019, 8, 376−384.
doi: 10.1002/ajoc.201800695
Li, M.; Behzadi, S.; Chen, M.; Pang, W.; Wang, F.; Tan, C. Phenoxyimine ligands bearing nitrogen-containing second coordination spheres for zinc catalyzed stereoselective ring-opening polymerization of rac-lactide. Organometallics 2019, 38, 461−468.
doi: 10.1021/acs.organomet.8b00788
Saeed, W.; Al-Odayni, A.; Alghamdi, A.; Alrahlah, A.; Aouak, T. Thermal properties and non-isothermal crystallization kinetics of poly(δ-valerolactone) and poly(δ-valerolactone)/titanium dioxide nanocomposites. Crystals 2018, 8, 452.
doi: 10.3390/cryst8120452
D’auria, I.; Mazzeo, M.; Pappalardo, D.; Lamberti, M.; Pellecchia, C. Ring-opening polymerization of cyclicesters promoted by phosphido-diphosphine pincergroup 3 complexes. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 403−413.
doi: 10.1002/pola.24447
Khalil, M. I.; Al-Shamary, D. O. H.; Al-Deyab, S. S. Synthesis of poly(δ-valerolactone) by activated monomer polymerization, its characterization and potential medical application. Asian J. Biochem. Pharm. Res. 2015, 5, 137−147.
Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217−1256.
doi: 10.1016/j.progpolymsci.2010.04.002
Duale, K.; Zięba, M.; Chaber, P.; Di Fouque, D.; Memboeuf, A.; Peptu, C.; Radecka, I.; Kowalczuk, M.; Adamus, G. Molecular level structure of biodegradable poly(δ-valerolactone) obtained in the presence of boric acid. Molecules 2018, 23, 2034.
doi: 10.3390/molecules23082034
Saeed, W. S.; Al-Odayni, A.; Ali Alghamdi, A.; Abdulaziz Al-Owais, A.; Semlali, A.; Aouak, T. Miscibility of poly(ethylene-co-vinylalcohol)/poly(δ-valerolactone) blend and tissue engineering scaffold fabrication using naphthalene as porogen. Polym. Plast. Technol. Eng. 2018, 58, 1−23.
Lee, H.; Zeng, F.; Dunne, M.; Allen, C. Methoxy poly(ethylene glycol)-block-poly(δ-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules 2005, 6, 3119−3128.
doi: 10.1021/bm050451h
Nair, K. L.; Jagadeeshan, S.; Nair, S. A.; Kumar, G. S. V. Evaluation of triblock copolymeric micelles of δ-valerolactone and poly(ethylene glycol) as a competent vector for doxorubicin delivery against cancer. J. Nanobiotechnol. 2011, 9, 42.
doi: 10.1186/1477-3155-9-42
Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Gamma-valerolactone. A sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 2013, 15, 584−595.
doi: 10.1039/c3gc37065h
Alghamdi, A. A.; Saeed, W. S.; Al-Odayni, A.; Alharthi, F. A.; Semlali, A.; Aouak, T. Poly(ethylene-co-vinylalcohol)/poly(δ-valerolactone)/aspirin composite: model for a new drug-carrier system. Polymers 2019, 11, 439.
doi: 10.3390/polym11030439
Wu, T.; Wei, Z.; Ren, Y.; Yu, Y.; Leng, X.; Li, Y. Highly branched linear-comb random copolyesters of ε-caprolactone and δ-valerolactone: isodimorphism, mechanical properties and enzymatic degradation behavior. Polym. Degrad. Stab. 2018, 155, 173−182.
doi: 10.1016/j.polymdegradstab.2018.07.018
Zhang, L.; Dong, H.; Li, M.; Wang, L.; Liu, Y.; Wang, L.; Fu, S. Fabrication of polylactic acid-modified carbon black composites into improvement of levelness and mechanical properties of spun-dyeing polylactic acid composites membrane. ACS Sustain. Chem. Eng. 2018, 7, 688−696.
Xiao, Y.; Pan, J.; Wang, D.; Heise, A.; Lang, M. Chemo-enzymatic synthesis of poly(4-piperidine lactone-b-ω-pentadecalactone) block copolymers as biomaterials with antibacterial properties. Biomacromolecules 2018, 19, 2673−2681.
doi: 10.1021/acs.biomac.8b00296
Wilson, J. A.; Hopkins, S. A.; Wright, P. M.; Dove, A. P. Synthesis of ω-pentadecalactone copolymers with independently tunable thermal and degradation behavior. Macromolecules 2015, 48, 950−958.
doi: 10.1021/ma5022049
Hong, M.; Tang, X.; Newell, B. S.; Chen, E. Y. X. “Nonstrained” γ-butyrolactone-based copolyesters: copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules 2017, 50, 8469−8479.
doi: 10.1021/acs.macromol.7b02174
Fernández, J.; Etxeberria, A.; Sarasua, J. In vitro degradation studies and mechanical behavior of poly(ε-caprolactone-co-δ-valerolactone) and poly(ε-caprolactone-co-L-lactide) with random and semi-alternating chain microstructures. Eur. Polym. J. 2015, 71, 585−595.
doi: 10.1016/j.eurpolymj.2015.09.001
Hunley, M. T.; Beers, K. L. Nonlinear method for determining reactivity ratios of ring-opening copolymerizations. Macromolecules 2013, 46, 1393−1399.
doi: 10.1021/ma302015e
Fernández, J.; Etxeberria, A.; Sarasua, J. R. Synthesis, structure and properties of poly(L-lactide-co-caprolactone) statistical copolymers. J. Mech. Behav. Biomed. Mater. 2012, 9, 100−112.
doi: 10.1016/j.jmbbm.2012.01.003
Chandra, R.; Rustgi, R. Biodegradable polymers. Prog. Polym. Sci. 1998, 23, 1273−1335.
doi: 10.1016/S0079-6700(97)00039-7
Faÿ, F.; Renard, E.; Langlois, V.; Linossier, I.; Vallée-Rehel, K. Development of poly(ε-caprolactone-co-L-lactide) and poly(ε-caprolactone-co-δ-valerolactone) as new degradable binder used for antifouling paint. Eur. Polym. J. 2007, 43, 4800−4813.
doi: 10.1016/j.eurpolymj.2007.07.045
Hu, Q.; Jie, S.; Braunstein, P.; Li, B. Highly active tridentate amino-phenol zinc complexes for the catalytic ring-opening polymerization of ε-caprolactone. J. Organomet. Chem. 2019, 882, 1−9.
doi: 10.1016/j.jorganchem.2018.12.013
Hunley, M. T.; Sari, N.; Beers, K. L. Microstructure analysis and model discrimination of enzyme-catalyzed copolyesters. ACS Macro Lett. 2013, 2, 375−379.
doi: 10.1021/mz300659h
Save, M.; Schappacher, M.; Soum, A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. General aspects and kinetics. Macromol. Chem. Phys. 2002, 203, 889−899.
doi: 10.1002/1521-3935(20020401)203:5/6<889::AID-MACP889>3.0.CO;2-O
Piedra-Arroni, E.; Ladavière, C.; Amgoune, A.; Bourissou, D. Ring-opening polymerization with Zn(C6F5)2-based lewis pairs: original and efficient approach to cyclic polyesters. J. Am. Chem. Soc. 2013, 135, 13306−13309.
doi: 10.1021/ja4069968
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Zhenjie Yang , Chenyang Hu , Xuan Pang , Xuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Shan Jiang , Lingchen Meng , Wenyue Ma , Qingkai Qi , Wei Zhang , Bin Xu , Leijing Liu , Wenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Mengjuan Sun , Muye Zhou , Yifang Xiao , Hailei Tang , Jinhua Chen , Ruitao Zhang , Chunjiayu Li , Qi Ya , Qian Chen , Jiasheng Tu , Qiyue Wang , Chunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Ya-Ping Liu , Zhi-Rong Gui , Zhen-Wen Zhang , Sai-Kang Wang , Wei Lang , Yanzhu Liu , Qian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO−. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321