Citation: Qian Hu, Su-Yun Jie, Pierre Braunstein, Bo-Geng Li. Ring-opening Copolymerization of ε-Caprolactone and δ-Valerolactone Catalyzed by a 2,6-Bis(amino)phenol Zinc Complex[J]. Chinese Journal of Polymer Science, ;2020, 38(3): 240-247. doi: 10.1007/s10118-020-2347-4 shu

Ring-opening Copolymerization of ε-Caprolactone and δ-Valerolactone Catalyzed by a 2,6-Bis(amino)phenol Zinc Complex

  • Corresponding author: Su-Yun Jie, jiesy@zju.edu.cn
  • Received Date: 28 May 2019
    Revised Date: 6 August 2019
    Available Online: 12 October 2019

  • In combination with methyllithium, a 2,6-bis(amino)phenol zinc complex 1 was used in the ring-opening polymerization of δ-valerolactone in the absence or presence of benzyl alcohol and showed high efficiency, mainly producing cyclic and linear polyvalerolactones, respectively. On the basis of homopolymerization, the ring-opening copolymerization of ε-caprolactone and δ-valerolactone was investigated. The P(CL-co-VL) random copolymers, PCL-b-PVL and PVL-b-PCL diblock copolymers, were prepared by varying the feeding strategy (premixing or sequential feeding). The copolymer composition was adjusted by varying the feeding ratio of two monomers. The structure and thermal properties of obtained polymers were characterized by GPC, 1H-NMR, 13C-NMR, MALDI-TOF mass spectroscopy, and DSC, respectively.
  • 加载中
    1. [1]

      Sangeetha, V. H.; Deka, H.; Varghese, T. O.; Nayak, S. K. State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym. Compos. 2018, 39, 81−101.  doi: 10.1002/pc.23906

    2. [2]

      Pant, H. R.; Kim, H. J.; Bhatt, L. R.; Joshi, M. K.; Kim, E. K.; Kim, J. I.; Abdal-hay, A.; Hui, K. S.; Kim, C. S. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications. Appl. Surf. Sci. 2013, 285, 538−544.  doi: 10.1016/j.apsusc.2013.08.089

    3. [3]

      Cameron, D. J. A.; Shaver, M. P. Aliphatic polyester polymer stars: Synthesis, properties and applications in biomedicine and nanotechnology. Chem. Soc. Rev. 2011, 40, 1761−1776.  doi: 10.1039/C0CS00091D

    4. [4]

      Shin, E. J.; Brown, H. A.; Gonzalez, S.; Jeong, W.; Hedrick, J. L.; Waymouth, R. M. Zwitterionic copolymerization: synthesis of cyclic gradient copolymers. Angew. Chem. Int. Ed. 2011, 50, 6388−6391.  doi: 10.1002/anie.201101853

    5. [5]

      Stirling, E.; Champouret, Y.; Visseaux, M. Catalytic metal-based systems for controlled statistical copolymerisation of lactide with a lactone. Polym. Chem. 2018, 9, 2517−2531.  doi: 10.1039/C8PY00310F

    6. [6]

      Rad'Kova, N.; Rad'Kov, V.; Cherkasov, A.; Kovylina, T.; Trifonov, A. Lanthanide bis(borohydride) complexes coordinated by tetradentate phenoxide ligand: synthesis, structure, and catalytic activity in ring-opening polymerization of rac-lactide and ε-caprolactone. Inorg. Chim. Acta 2019, 489, 132−139.  doi: 10.1016/j.ica.2019.02.014

    7. [7]

      Cho, J.; Chun, M. K.; Nayab, S.; Jeong, J. H. Synthesis and structures of copper(II) complexes containing N,N-bidentate N-substituted phenylethanamine derivatives as pre-catalysts for heterotactic-enriched polylactide. Polyhedron 2019, 163, 54−62.  doi: 10.1016/j.poly.2019.02.014

    8. [8]

      Caballero-Jiménez, D.; García-de-Jesús, O.; Lopez, N.; Reyes-Ortega, Y. Muñoz-Hernández, M. Tetranuclear complexes of group 12 and 13 supported on a polynucleating ligand and activity studies in the ROP of rac-lactide. Inorg. Chim. Acta 2019, 489, 120−125.  doi: 10.1016/j.ica.2019.02.007

    9. [9]

      Dou, J.; Zhu, D.; Zhang, W.; Wang, R.; Wang, S.; Zhang, Q.; Zhang, X.; Sun, W. H. Highly efficient iron(II) catalysts toward ring opening polymerization of ε-caprolactone through in situ initiation. Inorg. Chim. Acta 2019, 488, 299−303.  doi: 10.1016/j.ica.2019.01.040

    10. [10]

      Munzeiwa, W. A.; Nyamori, V. O.; Omondi, B. N,O-amino-phenolate Mg(II) and Zn(II) Schiff base complexes: synthesis and application in ring-opening polymerization of ε-caprolactone and lactides. Inorg. Chim. Acta 2019, 487, 264−274.  doi: 10.1016/j.ica.2018.12.028

    11. [11]

      Chen, X.; Wang, B.; Pan, L.; Li, Y. Homoleptic, bis-ligated magnesium complexes for ring-opening polymerization of lactide and lactones: synthesis, structure, polymerization behavior and mechanism studies. Appl. Organomet. Chem. 2019, 33, e4770.  doi: 10.1002/aoc.4770

    12. [12]

      Steiniger, P.; Schäfer, P. M.; Wölper, C.; Henkel, J.; Ksiazkiewicz, A. N.; Pich, A.; Herres-Pawlis, S.; Schulz, S. Synthesis, structures, and catalytic activity of homo- and heteroleptic ketoiminate zinc complexes in lactide polymerization. Eur. J. Inorg. Chem. 2018, 2018, 4014−4021.  doi: 10.1002/ejic.201800504

    13. [13]

      González, D. M.; Cisterna, J.; Brito, I.; Roisnel, T.; Hamon, J.; Manzur, C. Binuclear Schiff-base zinc(II) complexes: synthesis, crystal structures and reactivity toward ring opening polymerization of rac-lactide. Polyhedron 2019, 162, 91−99.  doi: 10.1016/j.poly.2019.01.043

    14. [14]

      Yang, Z.; Hu, C.; Duan, R.; Sun, Z.; Zhang, H.; Pang, X.; Li, L. Salen-manganese complexes and their application in the ring-opening polymerization of lactide and ε-caprolactone. Asian J. Org. Chem. 2019, 8, 376−384.  doi: 10.1002/ajoc.201800695

    15. [15]

      Li, M.; Behzadi, S.; Chen, M.; Pang, W.; Wang, F.; Tan, C. Phenoxyimine ligands bearing nitrogen-containing second coordination spheres for zinc catalyzed stereoselective ring-opening polymerization of rac-lactide. Organometallics 2019, 38, 461−468.  doi: 10.1021/acs.organomet.8b00788

    16. [16]

      Saeed, W.; Al-Odayni, A.; Alghamdi, A.; Alrahlah, A.; Aouak, T. Thermal properties and non-isothermal crystallization kinetics of poly(δ-valerolactone) and poly(δ-valerolactone)/titanium dioxide nanocomposites. Crystals 2018, 8, 452.  doi: 10.3390/cryst8120452

    17. [17]

      D’auria, I.; Mazzeo, M.; Pappalardo, D.; Lamberti, M.; Pellecchia, C. Ring-opening polymerization of cyclicesters promoted by phosphido-diphosphine pincergroup 3 complexes. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 403−413.  doi: 10.1002/pola.24447

    18. [18]

      Khalil, M. I.; Al-Shamary, D. O. H.; Al-Deyab, S. S. Synthesis of poly(δ-valerolactone) by activated monomer polymerization, its characterization and potential medical application. Asian J. Biochem. Pharm. Res. 2015, 5, 137−147.

    19. [19]

      Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217−1256.  doi: 10.1016/j.progpolymsci.2010.04.002

    20. [20]

      Duale, K.; Zięba, M.; Chaber, P.; Di Fouque, D.; Memboeuf, A.; Peptu, C.; Radecka, I.; Kowalczuk, M.; Adamus, G. Molecular level structure of biodegradable poly(δ-valerolactone) obtained in the presence of boric acid. Molecules 2018, 23, 2034.  doi: 10.3390/molecules23082034

    21. [21]

      Saeed, W. S.; Al-Odayni, A.; Ali Alghamdi, A.; Abdulaziz Al-Owais, A.; Semlali, A.; Aouak, T. Miscibility of poly(ethylene-co-vinylalcohol)/poly(δ-valerolactone) blend and tissue engineering scaffold fabrication using naphthalene as porogen. Polym. Plast. Technol. Eng. 2018, 58, 1−23.

    22. [22]

      Lee, H.; Zeng, F.; Dunne, M.; Allen, C. Methoxy poly(ethylene glycol)-block-poly(δ-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules 2005, 6, 3119−3128.  doi: 10.1021/bm050451h

    23. [23]

      Nair, K. L.; Jagadeeshan, S.; Nair, S. A.; Kumar, G. S. V. Evaluation of triblock copolymeric micelles of δ-valerolactone and poly(ethylene glycol) as a competent vector for doxorubicin delivery against cancer. J. Nanobiotechnol. 2011, 9, 42.  doi: 10.1186/1477-3155-9-42

    24. [24]

      Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Gamma-valerolactone. A sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 2013, 15, 584−595.  doi: 10.1039/c3gc37065h

    25. [25]

      Alghamdi, A. A.; Saeed, W. S.; Al-Odayni, A.; Alharthi, F. A.; Semlali, A.; Aouak, T. Poly(ethylene-co-vinylalcohol)/poly(δ-valerolactone)/aspirin composite: model for a new drug-carrier system. Polymers 2019, 11, 439.  doi: 10.3390/polym11030439

    26. [26]

      Wu, T.; Wei, Z.; Ren, Y.; Yu, Y.; Leng, X.; Li, Y. Highly branched linear-comb random copolyesters of ε-caprolactone and δ-valerolactone: isodimorphism, mechanical properties and enzymatic degradation behavior. Polym. Degrad. Stab. 2018, 155, 173−182.  doi: 10.1016/j.polymdegradstab.2018.07.018

    27. [27]

      Zhang, L.; Dong, H.; Li, M.; Wang, L.; Liu, Y.; Wang, L.; Fu, S. Fabrication of polylactic acid-modified carbon black composites into improvement of levelness and mechanical properties of spun-dyeing polylactic acid composites membrane. ACS Sustain. Chem. Eng. 2018, 7, 688−696.

    28. [28]

      Xiao, Y.; Pan, J.; Wang, D.; Heise, A.; Lang, M. Chemo-enzymatic synthesis of poly(4-piperidine lactone-b-ω-pentadecalactone) block copolymers as biomaterials with antibacterial properties. Biomacromolecules 2018, 19, 2673−2681.  doi: 10.1021/acs.biomac.8b00296

    29. [29]

      Wilson, J. A.; Hopkins, S. A.; Wright, P. M.; Dove, A. P. Synthesis of ω-pentadecalactone copolymers with independently tunable thermal and degradation behavior. Macromolecules 2015, 48, 950−958.  doi: 10.1021/ma5022049

    30. [30]

      Hong, M.; Tang, X.; Newell, B. S.; Chen, E. Y. X. “Nonstrained” γ-butyrolactone-based copolyesters: copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules 2017, 50, 8469−8479.  doi: 10.1021/acs.macromol.7b02174

    31. [31]

      Fernández, J.; Etxeberria, A.; Sarasua, J. In vitro degradation studies and mechanical behavior of poly(ε-caprolactone-co-δ-valerolactone) and poly(ε-caprolactone-co-L-lactide) with random and semi-alternating chain microstructures. Eur. Polym. J. 2015, 71, 585−595.  doi: 10.1016/j.eurpolymj.2015.09.001

    32. [32]

      Hunley, M. T.; Beers, K. L. Nonlinear method for determining reactivity ratios of ring-opening copolymerizations. Macromolecules 2013, 46, 1393−1399.  doi: 10.1021/ma302015e

    33. [33]

      Fernández, J.; Etxeberria, A.; Sarasua, J. R. Synthesis, structure and properties of poly(L-lactide-co-caprolactone) statistical copolymers. J. Mech. Behav. Biomed. Mater. 2012, 9, 100−112.  doi: 10.1016/j.jmbbm.2012.01.003

    34. [34]

      Chandra, R.; Rustgi, R. Biodegradable polymers. Prog. Polym. Sci. 1998, 23, 1273−1335.  doi: 10.1016/S0079-6700(97)00039-7

    35. [35]

      Faÿ, F.; Renard, E.; Langlois, V.; Linossier, I.; Vallée-Rehel, K. Development of poly(ε-caprolactone-co-L-lactide) and poly(ε-caprolactone-co-δ-valerolactone) as new degradable binder used for antifouling paint. Eur. Polym. J. 2007, 43, 4800−4813.  doi: 10.1016/j.eurpolymj.2007.07.045

    36. [36]

      Hu, Q.; Jie, S.; Braunstein, P.; Li, B. Highly active tridentate amino-phenol zinc complexes for the catalytic ring-opening polymerization of ε-caprolactone. J. Organomet. Chem. 2019, 882, 1−9.  doi: 10.1016/j.jorganchem.2018.12.013

    37. [37]

      Hunley, M. T.; Sari, N.; Beers, K. L. Microstructure analysis and model discrimination of enzyme-catalyzed copolyesters. ACS Macro Lett. 2013, 2, 375−379.  doi: 10.1021/mz300659h

    38. [38]

      Save, M.; Schappacher, M.; Soum, A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. General aspects and kinetics. Macromol. Chem. Phys. 2002, 203, 889−899.  doi: 10.1002/1521-3935(20020401)203:5/6<889::AID-MACP889>3.0.CO;2-O

    39. [39]

      Piedra-Arroni, E.; Ladavière, C.; Amgoune, A.; Bourissou, D. Ring-opening polymerization with Zn(C6F5)2-based lewis pairs: original and efficient approach to cyclic polyesters. J. Am. Chem. Soc. 2013, 135, 13306−13309.  doi: 10.1021/ja4069968

  • 加载中
    1. [1]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    2. [2]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    3. [3]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    4. [4]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    5. [5]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    6. [6]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    7. [7]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    8. [8]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    9. [9]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    10. [10]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    11. [11]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    12. [12]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    16. [16]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    17. [17]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    18. [18]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    19. [19]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    20. [20]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

Metrics
  • PDF Downloads(0)
  • Abstract views(799)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return