Citation: Bo Yang, Jian-Zhong Du. Ultrasound-responsive Homopolymer Nanoparticles[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 349-356. doi: 10.1007/s10118-020-2345-6 shu

Ultrasound-responsive Homopolymer Nanoparticles

  • Corresponding author: Jian-Zhong Du, jzdu@tongji.edu.cn
  • Received Date: 25 July 2019
    Revised Date: 22 August 2019
    Available Online: 24 September 2019

  • Noninvasive ultrasound is a more effective strategy for on-demand drug delivery of polymeric nanoparticles than many other stimuli. However, the preparation of ultrasound-responsive homopolymer nanoparticles is still very challenging. In this study, we disclose the regulating factors of ultrasound responsiveness of homopolymer nanoparticles and the disaggregation behavior of homopolymer nanoparticle aggregates. Homopolymer nanoparticles such as vesicles and large compound micelles (LCMs) are self-assembled from poly(methoxyethyl methacrylate) (PMEMA) and poly(amic acid) (PAA), respectively. The ultrasound responsiveness of PAA vesicles at metastable state could be regulated by tuning the self-assembly temperature (Ts), and was optimized when Ts is around the glass transition temperature (Tg) of PAA. However, the PMEMA LCMs did not respond to ultrasound as they are at stable state. On the other hand, poly(2-(2-ethoxyethoxy)ethyl acrylate) (PEEA) could self-assemble into vesicle aggregates or complex micelle aggregates, which were dissociated upon sonication. Overall, the above findings provide us with a fresh insight for designing ultrasound-responsive polymeric nanoparticles.
  • 加载中
    1. [1]

      Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969−5985.  doi: 10.1039/c2cs35115c

    2. [2]

      Wang, M. Z.; Wang, T.; Yuan, K.; Du, J. Z. Preparation of water dispersible poly(methyl methacrylate)-based vesicles for facile persistent antibacterial applications. Chinese J. Polym. Sci. 2016, 34, 44−51.  doi: 10.1007/s10118-016-1725-4

    3. [3]

      Zou, Y. J.; He, S. S.; Du, J. Z. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci. 2018, 36, 1239−1250.  doi: 10.1007/s10118-018-2156-1

    4. [4]

      Xiao, J. G.; Hu, Y.; Du, J. Z. Polymer nanodisks by collapse of nanocapsules. Sci. China Chem. 2018, 61, 569−575.  doi: 10.1007/s11426-017-9209-3

    5. [5]

      Song, T.; Xi, Y. J.; Du, J. Z. Antibacterial hydrogels incorporated with poly(glutamic acid)-based vesicles. Acta Polymerica Sinica (in Chinese) 2018, 119−128.  doi: 10.11777/j.issn1000-3304.2018.17229

    6. [6]

      Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751−760.  doi: 10.1038/nnano.2007.387

    7. [7]

      Zhu, Y. Q.; Yang, B.; Chen, S.; Du, J. Z. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci. 2017, 64, 1−22.  doi: 10.1016/j.progpolymsci.2015.05.001

    8. [8]

      Chen, W. Q.; Du, J. Z. Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Sci. Rep. 2013, 3, 2162.  doi: 10.1038/srep02162

    9. [9]

      Zhao, Y. Z.; Du, L. N.; Lu, C. T.; Jin, Y. G.; Ge, S. P. Potential and problems in ultrasound-responsive drug delivery systems. Int. J. Nanomed. 2013, 8, 1621−1633.

    10. [10]

      Wang, D. R.; Wang, X. G. Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties. Prog. Polym. Sci. 2013, 38, 271−301.  doi: 10.1016/j.progpolymsci.2012.07.003

    11. [11]

      Al-Ahmady, Z.; Kostarelos, K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem. Rev. 2016, 116, 3883−3918.  doi: 10.1021/acs.chemrev.5b00578

    12. [12]

      Yuan, K.; Zhou, X.; Du, J. Z. Synthesis and characterization of thermo-responsive polypeptide-based vesicles with photo-cross-linked membranes. Acta Phys. Chim. Sin. 2017, 33, 656−660.

    13. [13]

      Wang, F. Y. K.; Gao, J. Y.; Xiao, J. G.; Du, J. Z. Dually gated polymersomes for gene delivery. Nano Lett. 2018, 18, 5562−5568.  doi: 10.1021/acs.nanolett.8b01985

    14. [14]

      Xu, X. F.; Pan, C. Y.; Zhang, W. J.; Hong, C. Y. Polymerization-induced self-assembly generating vesicles with adjustable pH-responsive release performance. Macromolecules 2019, 52, 1965−1975.  doi: 10.1021/acs.macromol.9b00144

    15. [15]

      Qiu, L.; Zhao, L.; Xing, C.; Zhan, Y. Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. Chin. Chem. Lett. 2018, 29, 301−304.  doi: 10.1016/j.cclet.2017.09.048

    16. [16]

      Tan, J.; Deng, Z.; Liu, G.; Hu, J.; Liu, S. Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics. Biomaterials 2018, 178, 608−619.  doi: 10.1016/j.biomaterials.2018.03.035

    17. [17]

      Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 2014, 43, 3595−3629.  doi: 10.1039/c3cs60436e

    18. [18]

      Xiao, Y. F.; Hu, Y.; Du, J. Z. Controlling blood sugar levels with a glycopolymersome. Mater. Horiz. 2019, DOI: 10.1039/C9MH00625G.  doi: 10.1039/C9MH00625G

    19. [19]

      Wright, D. B.; Thompson, M. P.; Touve, M. A.; Carlini, A. S.; Gianneschi, N. C. Enzyme-responsive polymer nanoparticles via ring-opening metathesis polymerization-induced self-assembly. Macromol. Rapid Commun. 2019, 40, 1800467.  doi: 10.1002/marc.201800467

    20. [20]

      Xuan, J.; Pelletier, M.; Xia, H.; Zhao, Y. Ultrasound-induced disruption of amphiphilic block copolymer micelles. Macromol. Chem. Phys. 2011, 212, 498−506.  doi: 10.1002/macp.201000624

    21. [21]

      Xuan, J.; Boissiere, O.; Zhao, Y.; Yan, B.; Tremblay, L.; Lacelle, S.; Xia, H.; Zhao, Y. Ultrasound-responsive block copolymer micelles based on a new amplification mechanism. Langmuir 2012, 28, 16463−16468.  doi: 10.1021/la303946b

    22. [22]

      Yin, T.; Wang, P.; Li, J.; Zheng, R.; Zheng, B.; Cheng, D.; Li, R.; Lai, J.; Shuai, X. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials 2013, 34, 4532−4543.  doi: 10.1016/j.biomaterials.2013.02.067

    23. [23]

      Yin, T.; Wang, P.; Li, J.; Wang, Y.; Zheng, B.; Zheng, R.; Cheng, D.; Shuai, X. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials 2014, 35, 5932−5943.  doi: 10.1016/j.biomaterials.2014.03.072

    24. [24]

      Wang, Y.; Yin, T.; Su, Z.; Qiu, C.; Wang, Y.; Zheng, R.; Chen, M.; Shuai, X. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res. 2018, 11, 3710−3721.  doi: 10.1007/s12274-017-1939-y

    25. [25]

      Zhang, L.; Yin, T.; Li, B.; Zheng, R.; Qiu, C.; Lam, K. S.; Zhang, Q.; Shuai, X. Size-modulable nanoprobe for high-performance ultrasound imaging and drug delivery against cancer. ACS Nano 2018, 12, 3449−3460.  doi: 10.1021/acsnano.8b00076

    26. [26]

      Zhou, F.; Xie, M.; Chen, D. Structure and ultrasonic sensitivity of the superparticles formed by self-assembly of single chain Janus nanoparticles. Macromolecules 2014, 47, 365−372.  doi: 10.1021/ma401589z

    27. [27]

      Zhang, J.; Liu, K.; Mullen, K.; Yin, M. Self-assemblies of amphiphilic homopolymers: synthesis, morphology studies and biomedical applications. Chem. Commun. 2015, 51, 11541−11555.  doi: 10.1039/C5CC03016A

    28. [28]

      Zhu, Y. Q.; Fan, L.; Yang, B.; Du, J. Z. Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano 2014, 8, 5022−31.  doi: 10.1021/nn5010974

    29. [29]

      Fan, L.; Lu, H.; Zou, K. D.; Chen, J.; Du, J. Z. Homopolymer vesicles with a gradient bilayer membrane as drug carriers. Chem. Commun. 2013, 49, 11521−11523.  doi: 10.1039/c3cc45873c

    30. [30]

      Sun, H.; Liu, D. Q.; Du, J. Z. Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π-π interaction. Chem. Sci. 2019, 10, 657−664.  doi: 10.1039/C8SC03995J

    31. [31]

      Sun, H.; Zhu, Y. Q.; Yang, B.; Wang, Y. F.; Wu, Y. P.; Du, J. Z. Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. J. Mater. Chem. A 2016, 4, 12088−12097.  doi: 10.1039/C6TA04330E

    32. [32]

      Zhu, Y. Q.; Liu, L.; Du, J. Z. Probing into homopolymer self-assembly: How does hydrogen bonding influence morphology? Macromolecules 2013, 46, 194−203.  doi: 10.1021/ma302176a

    33. [33]

      Sun, H.; Du, J. Z. Plasmonic vesicles with tailored collective properties. Nanoscale 2018, 10, 17354−17361.  doi: 10.1039/C8NR04820G

    34. [34]

      Liu, J.; Huang, W.; Pang, Y.; Huang, P.; Zhu, X.; Zhou, Y.; Yan, D. Molecular self-assembly of a homopolymer: an alternative to fabricate drug-delivery platforms for cancer therapy. Angew. Chem. Int. Ed. 2011, 50, 9162−9166.  doi: 10.1002/anie.201102280

    35. [35]

      Yin, M.; Kuhlmann, C. R. W.; Sorokina, K.; Li, C.; Mihov, G.; Pietrowski, E.; Koynov, K.; Klapper, M.; Luhmann, H. J.; Müllen, K.; Weil, T. Novel fluorescent core-shell nanocontainers for cell membrane transport. Biomacromolecules 2008, 9, 1381−1389.  doi: 10.1021/bm701138g

    36. [36]

      Yin, M.; Shen, J.; Pflugfelder, G. O.; Müllen, K. A fluorescent core-shell dendritic macromolecule specifically stains the extracellular matrix. J. Am. Chem. Soc. 2008, 130, 7806−7807.  doi: 10.1021/ja8022362

    37. [37]

      Sandanaraj, B. S.; Demont, R.; Thayumanavan, S. Generating patterns for sensing using a single receptor scaffold. J. Am. Chem. Soc. 2007, 129, 3506−3507.  doi: 10.1021/ja070229f

    38. [38]

      Mane, S. R.; Rao N, V.; Chaterjee, K.; Dinda, H.; Nag, S.; Kishore, A.; Das Sarma, J.; Shunmugam, R. Amphiphilic homopolymer vesicles as unique nano-carriers for cancer therapy. Macromolecules 2012, 45, 8037−8042.  doi: 10.1021/ma301644m

    39. [39]

      Lim, E. K.; Huh, Y. M.; Yang, J.; Lee, K.; Suh, J. S.; Haam, S. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv. Mater. 2011, 23, 2436−2442.  doi: 10.1002/adma.201100351

    40. [40]

      Sun, H.; Wang, F. Y. K.; Du, J. Z. Preparation, application and perspective in polymer vesicles with an inhomogeneous membrane. Sci. Sin. Chim. 2019, 49, 877−890.  doi: 10.1360/N032018-00259

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    3. [3]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    4. [4]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    5. [5]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    6. [6]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    9. [9]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    10. [10]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

    11. [11]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    12. [12]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    13. [13]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    14. [14]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    15. [15]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    16. [16]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    17. [17]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    18. [18]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    19. [19]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    20. [20]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

Metrics
  • PDF Downloads(0)
  • Abstract views(4033)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return