Citation: Xuan Liu, Xiao-Peng Ren, Rui Yang. Infectious Behavior in Photo-oxidation of Polymers[J]. Chinese Journal of Polymer Science, ;2020, 38(3): 248-256. doi: 10.1007/s10118-020-2344-7 shu

Infectious Behavior in Photo-oxidation of Polymers

  • Corresponding author: Rui Yang, yangr@mail.tsinghua.edu.cn
  • Received Date: 30 June 2019
    Revised Date: 13 August 2019
    Available Online: 12 October 2019

  • When a polymer is used together with others, its aging process will be affected by the adjacent polymers. This infectious behavior between polymers makes the aging process more complex than that of an individual material. In this study, infectious behavior in photo-oxidation of polymers was investigated. Polypropylenes (PPs), an unstabilized PP and a commercial PP, were chosen as the infection sources. Six typical polymers, high density polyethylene (HDPE), low density polyethylene (LDPE), polystyrene (PS), polycarbonate (PC), poly(ethylene terephthalate) (PET), and polyamide 6 (PA6), were used as the targets. The degree of oxidation of the targets was evaluated by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). An accelerating effect of two infection sources on the photo-oxidation of the target polymers was observed. Potential infectious agents from the infection sources were detected by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) and gas chromatography (GC). The acceleration effect of two main infectious agents, i.e. acetone and acetic acid, on the photo-oxidation of the commercial PP was verified. The infectious effect of the infection source on the target polymer was considered to be a comprehensive result of the effects of a variety of infectious agents.
  • 加载中
    1. [1]

      Ding, X. L.; Wang, S.; Shan, Z. H. Automotive interior decoration materials. Leather Science and Engineering (in Chinese) 2017, 27, 36−39.

    2. [2]

      Zheng, H.; Wang, C.; Jiang, F. Development trend of the elastomers used in inner tube and innerliners. China Elastomerics (in Chinese) 2011, 21, 98−103.

    3. [3]

      Ma, J. H.; Zhang, L. Q.; Wu, Y. P. Properties of tire tread composite and their mechanism. Polym. Bull. 2014, 1−9.

    4. [4]

      Moreno, D. D. P.; Saron, C. Influence of compatibilizer on the properties of low-density polyethylene/polyamide 6 blends obtained by mechanical recycling of multilayer film waste. Waste Manage. Res. 2018, 36, 729−736.  doi: 10.1177/0734242X18777795

    5. [5]

      Drake, W. O. The influence of sampleholders on oven aging of polypropylene. J. Polym. Sci.: Polym. Symposium 1976, 57, 153−159.

    6. [6]

      Colwell, J. M.; Nikolic, M. A. L.; Bottle, S. E.; George, G. A. Sensitive luminescence techniques to study the early stages of polymer oxidation. Polym. Degrad. Stab. 2013, 98, 2436−2444.  doi: 10.1016/j.polymdegradstab.2013.06.010

    7. [7]

      Curran, K.; Možir, A.; Underhill, M.; Gibson, L. T.; Fearn, T.; Strlič, M. Cross-infection effect of polymers of historic and heritage significance on the degradation of a cellulose reference test material. Polym. Degrad. Stab. 2014, 107, 294−306.  doi: 10.1016/j.polymdegradstab.2013.12.019

    8. [8]

      Aratani, N.; Katada, I.; Nakayama, K.; Terano, M.; Taniike, T. Development of high-throughput chemiluminescence imaging instrument for parallel evaluation of polymer lifetime. Polym. Degrad. Stab. 2015, 121, 340−347.  doi: 10.1016/j.polymdegradstab.2015.09.025

    9. [9]

      Celina, M.; George, G. A. Physical spreading of oxidation in solid polypropylene as studied by chemiluminescence. Polym. Degrad. Stab. 1993, 42, 335−344.  doi: 10.1016/0141-3910(93)90229-C

    10. [10]

      Ahlblad, G.; Reitberger, T.; Terselius, B.; Stenberg, B. Imaging chemiluminescence technique applied to thermo-oxidation of polymers—possibilities and limitations. Angew. Makromol. Chem. 1998, 261/262(Nr. 4611), 1−7.

    11. [11]

      Ahlblad, G.; Reitberger, T.; Terselius, B.; Stenberg, B. Thermo-oxidative infection in populations of EPDM particles studied by imaging chemiluminescence. Polym. Degrad. Stab. 1999, 65, 169−177.  doi: 10.1016/S0141-3910(98)00177-3

    12. [12]

      Celina, M.; Clough, R.; Jones, G. Polymer degradation initiated via infectious behavior. Polymer 2005, 46, 5161−5164.  doi: 10.1016/j.polymer.2005.04.033

    13. [13]

      Celina, M.; Clough, R. L.; Jones, G. D. Initiation of polymer degradation via transfer of infectious species. Polym. Degrad. Stab. 2006, 91, 1036−1044.  doi: 10.1016/j.polymdegradstab.2005.07.022

    14. [14]

      Liu, X.; Yang, R. Cross-infection in thermo-oxidation of polymers. Polym. Degrad. Stab. 2019, 161, 7−12.  doi: 10.1016/j.polymdegradstab.2019.01.009

    15. [15]

      Mistretta, M. C.; Botta, L.; Vinci, A. D.; Ceraulo, M.; La Mantia, F. P. Photo-oxidation of polypropylene/graphene nanoplatelets composites. Polym. Degrad. Stab. 2019, 160, 35−43.  doi: 10.1016/j.polymdegradstab.2018.12.003

    16. [16]

      Briassoulis, D.; Hiskakis, M.; Tserotas, P. Combined effect of UVA radiation and agrochemicals on the durability of agricultural multilayer films. Polym. Degrad. Stab. 2018, 154, 261−275.  doi: 10.1016/j.polymdegradstab.2018.06.012

    17. [17]

      Nayanathara, U.; Kottegoda, N.; Perera, I. C.; Mudiyanselage, T. K. Synthesis, photodegradable and antibacterial properties of polystyrene-cinnamaldehyde copolymer film. Polym. Degrad. Stab. 2018, 155, 195−207.  doi: 10.1016/j.polymdegradstab.2018.07.021

    18. [18]

      Zhao, J. H.; Li, Y. F.; Yang, R.; Yu, J. Infectious behavior of polypropylene during photo-oxidation. Acta Polymerica Sinica (in Chinese) 2015, 369−373.

    19. [19]

      Rabello, M. S.; White, J. R. The role of physical structure and morphology in the photodegradation behaviour of polypropylene. Polym. Degrad. Stab. 1997, 56, 55−73.  doi: 10.1016/S0141-3910(96)00202-9

    20. [20]

      Guo, J. J.; Yan, H.; Bao, H. B.; Wang, X. M.; Hu, Z. D.; Yang, J. J. Attenuated total reflection infrared spectroscopy for degradation profile of high density polyethylene after weathering aging. Spectroscopy and Spectral Analysis (in Chinese) 2015, 35, 1520−1524.

    21. [21]

      Yu, J. G.; Wang, X. D. Application of FTIR in study of thermo-oxidative degradation of PE/starch blends. Chinese Journal of Applied Chemistry (in Chinese) 2001, 18, 48−51.

    22. [22]

      Vilaplana, F.; Ribes-Greus, A.; Karlsson, S. Degradation of recycled high-impact polystyrene simulation by reprocessing and thermo-oxidation. Polym. Degrad. Stab. 2006, 91, 2163−2170.

    23. [23]

      Arrieta, C.; Dong, Y. Y.; Lan, A.; Vu-Khanh, T. Outdoor weathering of polyamide and polyester ropes used in fall arrest equipment. J. Appl. Polym. Sci. 2013, 130, 3058−3065.  doi: 10.1002/app.39524

    24. [24]

      Guo, Y. F.; Tao, Y. J.; Ma, J.; Jie, G. X.; Zhang, X. D.; Hu, L. F.; Liu, X.; Wang, J. Study on the natural aging of polycarbonate by FTIR. Engineering plastics application (in Chinese) 2012, 40, 77−80.

    25. [25]

      Pires, H. M.; Mendes, L. C.; Cestari, S. P.; Pita, V. J. R. R. Effect of weathering and accelerated photoaging on PET/PC (80/20 wt/wt%) melt extruded blend. Mater. Res. 2015, 18, 763−768.  doi: 10.1590/1516-1439.010115

    26. [26]

      Rånby, B.; Rabek, J. F. Photodegradation, photo-oxidation and photostabilization of polymers. John Wiley & Sons, London, 1975, p. 228, 232.

    27. [27]

      Zhao, J. H.; Yang, R.; Yu, J. Interfacial effect on photo-oxidation of PP via model blends. Polym. Degrad. Stab. 2013, 98, 1981−1987.  doi: 10.1016/j.polymdegradstab.2013.07.015

    28. [28]

      Fernando, S. S.; Christensen, P. A.; Egerton, T. A.; White, J. R. Carbon dioxide evolution and carbonyl group development during photodegradation of polyethylene and polypropylene. Polym. Degrad. Stab. 2007, 92, 2163−2172.  doi: 10.1016/j.polymdegradstab.2007.01.032

    29. [29]

      Bendjama, H.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M. Using photoactivated acetone for the degradation of Chlorazol Black in aqueous solutions: impact of mineral and organic additives. Sci. Total Environ. 2019, 653, 833−838.  doi: 10.1016/j.scitotenv.2018.11.007

  • 加载中
    1. [1]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    2. [2]

      Yingjie WangPeng TangWenchao TuQi GaoCuizhu WangLuying TanLixin ZhaoHongye HanLiefeng MaKouharu OtsukiWeilie XiaoWenli WangJinping LiuYong LiZhajun ZhanWei LiXianli ZhouNing Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955

    3. [3]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    4. [4]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    5. [5]

      Yunfen GaoLiying WangChufan ZhouYi ZhaoHai HuangJun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028

    6. [6]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    7. [7]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    8. [8]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    9. [9]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    10. [10]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    11. [11]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    12. [12]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    13. [13]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    14. [14]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    15. [15]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    16. [16]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    17. [17]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    18. [18]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    19. [19]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    20. [20]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

Metrics
  • PDF Downloads(0)
  • Abstract views(869)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return