Citation: Ying Yang, Tong Shan, Jian Cao, Hua-Chun Wang, Ji-Kang Wang, Hong-Liang Zhong, Yun-Xiang Xu. Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 342-348. doi: 10.1007/s10118-020-2342-9 shu

Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance

  • Corresponding author: Hong-Liang Zhong, hlzhong@sjtu.edu.cn Yun-Xiang Xu, yxxu@scu.edu.cn
  • † These authors contributed equally to this work.
  • Received Date: 23 July 2019
    Revised Date: 20 August 2019
    Available Online: 24 October 2019

  • Two conjugated polymers (PuIDTBD and PuIDTQ) with unsymmetric side chains have been prepared for polymer solar cells using two other polymers (PIDTBD and PIDTQ) with symmetric side chains as control compounds. The combination of methyl and 4-hexylphenyl side chains on the same bridged carbon can ensure good solubility, decrease π-π stacking distances, and bring proper miscibility with PC71BM simultaneously. Therefore, the corresponding polymer solar cells (PSCs) based on donor polymers with unsymmetric side chains exhibited enhanced short-circuit current density (JSC) and power conversion efficiency (PCE) compared with those of control polymers. The PIDTBD and PIDTQ based devices possessed low PCE of 2.13% and 1.48%, while PCEs of devices based on PuIDTBD and PuIDTQ were improved to 3.93% and 4.12%, respectively. The results demonstrate that unsymmetric side chain engineering of conjugated polymers is an effective approach to achieve high performance PSCs.
  • 加载中
    1. [1]

      Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: recent progress, challenges, and prospects. Angew. Chem. Int. Ed. 2019, 58, 4129−4142.  doi: 10.1002/anie.201808976

    2. [2]

      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734−4739.  doi: 10.1002/adma.201600281

    3. [3]

      Yang, B.; Zhang, S.; Chen, Y.; Cui, Y.; Liu, D.; Yao, H.; Zhang, J.; Wei, Z.; Hou, J. Investigation of conjugated polymers based on naphtho[2,3-c]thiophene-4,9-dione in fullerene-based and fullerene-free polymer solar cells. Macromolecules 2017, 50, 1453−1462.  doi: 10.1021/acs.macromol.6b02733

    4. [4]

      Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z. G.; Li, Y. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 2018, 9, 743.  doi: 10.1038/s41467-018-03207-x

    5. [5]

      Scharber, M. C. On the efficiency limit of conjugated polymer: fullerene-based bulk heterojunction solar cells. Adv. Mater. 2016, 28, 1994−2001.  doi: 10.1002/adma.201504914

    6. [6]

      Shi, Z.; Bai, Y.; Chen, X.; Zeng, R.; Tan, Z. A. Tandem structure: A breakthrough in power conversion efficiency for highly efficient polymer solar cells. Sustain. Energy Fuels 2019, 3, 910−934.  doi: 10.1039/C8SE00601F

    7. [7]

      Chochos, C. L.; Drakopoulou, S.; Katsouras, A.; Squeo, B. M.; Sprau, C.; Colsmann, A.; Gregoriou, V. G.; Cando, A. P.; Allard, S.; Scherf, U.; Gasparini, N.; Kazerouni, N.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Beyond donor-acceptor (D-A) approach: Structure-optoelectronic properties—organic photovoltaic performance correlation in new D-A1-D-A2 low-bandgap conjugated polymers. Macromol. Rapid Commun. 2017, 38, 1600720.  doi: 10.1002/marc.201600720

    8. [8]

      Guo, X.; Baumgarten, M.; Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 2013, 38, 1832−1908.  doi: 10.1016/j.progpolymsci.2013.09.005

    9. [9]

      Chochos, C. L.; Singh, R.; Kim, M.; Gasparini, N.; Katsouras, A.; Kulshreshtha, C.; Gregoriou, V. G.; Keivanidis, P. E.; Ameri, T.; Brabec, C. J.; Cho, K.; Avgeropoulos, A. Enhancement of the power conversion efficiency in organic photovoltaics by unveiling the appropriate polymer backbone enlargement approach. Adv. Funct. Mater. 2016, 26, 1840−1848.  doi: 10.1002/adfm.201504953

    10. [10]

      Mahesh, K.; Karpagam, S.; Pandian, K. How to design donor-acceptor based heterocyclic conjugated polymers for applications from organic electronics to sensors. Top. Curr. Chem. 2019, 377, 12.  doi: 10.1007/s41061-019-0237-4

    11. [11]

      Wang, M.; Hu, X.; Liu, L.; Duan, C.; Liu, P.; Ying, L.; Huang, F.; Cao, Y. Design and synthesis of copolymers of indacenodithiophene and naphtho[1,2-c:5,6-c]bis(1,2,5-thiadiazole) for polymer solar cells. Macromolecules 2013, 46, 3950−3958.  doi: 10.1021/ma400355w

    12. [12]

      Yin, Y.; Zhang, Y.; Zhao, L. Indaceno-based conjugated polymers for polymer solar cells. Macromol. Rapid Commun. 2018, 39, 1700697.  doi: 10.1002/marc.201700697

    13. [13]

      Bronstein, H.; Leem, D. S.; Hamilton, R.; Woebkenberg, P.; King, S.; Zhang, W.; Ashraf, R. S.; Heeney, M.; Anthopoulos, T. D.; Mello, J. D.; McCulloch, I. Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization. Macromolecules 2011, 44, 6649−6652.  doi: 10.1021/ma201158d

    14. [14]

      Ma, Y.; Kang, Z.; Zheng, Q. Recent advances in wide bandgap semiconducting polymers for polymer solar cells. J. Mater. Chem. A 2017, 5, 1860−1872.  doi: 10.1039/C6TA09325F

    15. [15]

      Qin, T.; Zang, Y.; Bai, W. Y.; Yao, K.; Xu, Y. X. The influence of oxygen atoms on conformation and π-π stacking of ladder-type donor-based polymers and their photovoltaic properties. Macromol. Rapid Commun. 2017, 38, 1700156.  doi: 10.1002/marc.201700156

    16. [16]

      Wang, H. C.; Li, Q. Y.; Yin, H. B.; Ren, X.; Yao, K.; Zheng, Y.; Xu, Y. X. Synergistic effects of selenophene and extended ladder-type donor units for efficient polymer solar cells. Macromol. Rapid Commun. 2018, 39, 1700483.  doi: 10.1002/marc.201700483

    17. [17]

      Xiao, Z.; Liu, F.; Geng, X.; Zhang, J.; Wang, S.; Xie, Y.; Li, Z.; Yang, H.; Yuan, Y.; Ding, L. A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci. Bull. 2017, 62, 1331−1336.  doi: 10.1016/j.scib.2017.09.017

    18. [18]

      Xu, Y. X.; Chueh, C. C.; Yip, H. L.; Ding, F. Z.; Li, Y. X.; Li, C. Z.; Li, X.; Chen, W. C.; Jen, A. K. Y. Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. Adv. Mater. 2012, 24, 6356−6361.  doi: 10.1002/adma.201203246

    19. [19]

      Zhang, Z. G.; Li, Y. Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Sci. China Chem. 2015, 58, 192−209.  doi: 10.1007/s11426-014-5260-2

    20. [20]

      Zhang, M.; Guo, X.; Wang, X.; Wang, H.; Li, Y. Synthesis and photovoltaic properties of D-A copolymers based on alkyl-substituted indacenodithiophene donor unit. Chem. Mater. 2011, 23, 4264−4270.  doi: 10.1021/cm2019586

    21. [21]

      Zhang, W.; Han, Y.; Zhu, X.; Fei, Z.; Feng, Y.; Treat, N. D.; Faber, H.; Stingelin, N.; McCulloch, I.; Anthopoulos, T. D.; Heeney, M. A novel alkylated indacenodithieno[3,2-b]thiophene-based polymer for high-performance field-effect transistors. Adv. Mater. 2016, 28, 3922−3927.  doi: 10.1002/adma.201504092

    22. [22]

      Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.; Heeney, M.; Zhang, W.; McCulloch, I.; DeLongchamp, D. M. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat. Commun. 2013, 4, 2238.  doi: 10.1038/ncomms3238

    23. [23]

      Chochos, C. L.; Katsouras, A.; Gasparini, N.; Koulogiannis, C.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Rational design of high-performance wide-bandgap (≈2 eV) polymer semiconductors as electron donors in organic photovoltaics exhibiting high open circuit voltages (≈ 1 V). Macromol. Rapid Commun. 2017, 38, 1600614.  doi: 10.1002/marc.201600614

    24. [24]

      Wang, M.; Cai, D.; Yin, Z.; Chen, S. C.; Du, C. F.; Zheng, Q. Asymmetric-indenothiophene-based copolymers for bulk heterojunction solar cells with 9.14% efficiency. Adv. Mater. 2016, 28, 3359−3365.  doi: 10.1002/adma.201505957

    25. [25]

      Liu, D.; Zhu, Q.; Gu, C.; Wang, J.; Qiu, M.; Chen, W.; Bao, X.; Sun, M.; Yang, R. High-performance photovoltaic polymers employing symmetry-breaking building blocks. Adv. Mater. 2016, 28, 8490−8498.  doi: 10.1002/adma.201602857

    26. [26]

      Bai, W.; Xu, X.; Li, Q.; Xu, Y.; Peng, Q. Efficient nonfullerene polymer solar cells enabled by small-molecular acceptors with a decreased fused-ring core. Small Methods 2018, 2, 1700373.  doi: 10.1002/smtd.201700373

    27. [27]

      Feng, S.; Zhang, C. E.; Liu, Y.; Bi, Z.; Zhang, Z.; Xu, X.; Ma, W.; Bo, Z. Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv. Mater. 2017, 29, 1703527.  doi: 10.1002/adma.201703527

    28. [28]

      Cao, J.; Shan, T.; Wang, J. K.; Xu, Y. X.; Ren, X.; Zhong, H. Stereoisomerism of ladder-type acceptor molecules and its effect on photovoltaic properties. Dyes Pigments 2019, 165, 354−360.  doi: 10.1016/j.dyepig.2019.02.046

    29. [29]

      Song, C. E.; Kim, Y. J.; Suranagi, S. R.; Kini, G. P.; Park, S.; Lee, S. K.; Shin, W. S.; Moon, S. J.; Kang, I. N.; Park, C. E.; Lee, J. C. Impact of the crystalline packing structures on charge transport and recombination via alkyl chain tunability of DPP-based small molecules in bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 2016, 8, 12940−12950.  doi: 10.1021/acsami.6b01576

    30. [30]

      Fan, J.; Zhang, Y.; Lang, C.; Qiu, M.; Song, J.; Yang, R.; Guo, F.; Yu, Q.; Wang, J.; Zhao, L. Side chain effect on poly(beznodithiophene-co-dithienobenzoquinoxaline) and their applications for polymer solar cells. Polymer 2016, 82, 228−237.  doi: 10.1016/j.polymer.2015.11.052

    31. [31]

      Liu, X.; Li, Q.; Li, Y.; Gong, X.; Su, S. J.; Cao, Y. Indacenodithiophene core-based small molecules with tunable side chains for solution-processed bulk heterojunction solar cells. J. Mater. Chem. A 2014, 2, 4004−4013.  doi: 10.1039/c3ta14659f

    32. [32]

      Liu, D.; Wang, J.; Gu, C.; Li, Y.; Bao, X.; Yang, R. Stirring up acceptor phase and controlling morphology via choosing appropriate rigid aryl rings as lever arms in symmetry-breaking benzodithiophene for high-performance fullerene and fullerene-free polymer solar cells. Adv. Mater. 2018, 30, 1705870.  doi: 10.1002/adma.201705870

    33. [33]

      Zhu, T.; Wan, Y.; Guo, Z.; Johnson, J.; Huang, L. Two birds with one stone: tailoring singlet fission for both triplet yield and exciton diffusion length. Adv. Mater. 2016, 28, 7539−7547.  doi: 10.1002/adma.201600968

  • 加载中
    1. [1]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    2. [2]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    3. [3]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    4. [4]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    5. [5]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    6. [6]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    7. [7]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    10. [10]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    11. [11]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    12. [12]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    13. [13]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    14. [14]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    15. [15]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    16. [16]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    17. [17]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    18. [18]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    19. [19]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    20. [20]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

Metrics
  • PDF Downloads(0)
  • Abstract views(4075)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return