Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance
English
Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance
-
Key words:
- Polymer solar cell
- / Indacenodithiophene
- / Side-chain engineering
- / Unsymmetric
-
-
-
[1]
Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: recent progress, challenges, and prospects. Angew. Chem. Int. Ed. 2019, 58, 4129−4142. doi: 10.1002/anie.201808976
-
[2]
Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734−4739. doi: 10.1002/adma.201600281
-
[3]
Yang, B.; Zhang, S.; Chen, Y.; Cui, Y.; Liu, D.; Yao, H.; Zhang, J.; Wei, Z.; Hou, J. Investigation of conjugated polymers based on naphtho[2,3-c]thiophene-4,9-dione in fullerene-based and fullerene-free polymer solar cells. Macromolecules 2017, 50, 1453−1462. doi: 10.1021/acs.macromol.6b02733
-
[4]
Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z. G.; Li, Y. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 2018, 9, 743. doi: 10.1038/s41467-018-03207-x
-
[5]
Scharber, M. C. On the efficiency limit of conjugated polymer: fullerene-based bulk heterojunction solar cells. Adv. Mater. 2016, 28, 1994−2001. doi: 10.1002/adma.201504914
-
[6]
Shi, Z.; Bai, Y.; Chen, X.; Zeng, R.; Tan, Z. A. Tandem structure: A breakthrough in power conversion efficiency for highly efficient polymer solar cells. Sustain. Energy Fuels 2019, 3, 910−934. doi: 10.1039/C8SE00601F
-
[7]
Chochos, C. L.; Drakopoulou, S.; Katsouras, A.; Squeo, B. M.; Sprau, C.; Colsmann, A.; Gregoriou, V. G.; Cando, A. P.; Allard, S.; Scherf, U.; Gasparini, N.; Kazerouni, N.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Beyond donor-acceptor (D-A) approach: Structure-optoelectronic properties—organic photovoltaic performance correlation in new D-A1-D-A2 low-bandgap conjugated polymers. Macromol. Rapid Commun. 2017, 38, 1600720. doi: 10.1002/marc.201600720
-
[8]
Guo, X.; Baumgarten, M.; Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 2013, 38, 1832−1908. doi: 10.1016/j.progpolymsci.2013.09.005
-
[9]
Chochos, C. L.; Singh, R.; Kim, M.; Gasparini, N.; Katsouras, A.; Kulshreshtha, C.; Gregoriou, V. G.; Keivanidis, P. E.; Ameri, T.; Brabec, C. J.; Cho, K.; Avgeropoulos, A. Enhancement of the power conversion efficiency in organic photovoltaics by unveiling the appropriate polymer backbone enlargement approach. Adv. Funct. Mater. 2016, 26, 1840−1848. doi: 10.1002/adfm.201504953
-
[10]
Mahesh, K.; Karpagam, S.; Pandian, K. How to design donor-acceptor based heterocyclic conjugated polymers for applications from organic electronics to sensors. Top. Curr. Chem. 2019, 377, 12. doi: 10.1007/s41061-019-0237-4
-
[11]
Wang, M.; Hu, X.; Liu, L.; Duan, C.; Liu, P.; Ying, L.; Huang, F.; Cao, Y. Design and synthesis of copolymers of indacenodithiophene and naphtho[1,2-c:5,6-c]bis(1,2,5-thiadiazole) for polymer solar cells. Macromolecules 2013, 46, 3950−3958. doi: 10.1021/ma400355w
-
[12]
Yin, Y.; Zhang, Y.; Zhao, L. Indaceno-based conjugated polymers for polymer solar cells. Macromol. Rapid Commun. 2018, 39, 1700697. doi: 10.1002/marc.201700697
-
[13]
Bronstein, H.; Leem, D. S.; Hamilton, R.; Woebkenberg, P.; King, S.; Zhang, W.; Ashraf, R. S.; Heeney, M.; Anthopoulos, T. D.; Mello, J. D.; McCulloch, I. Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization. Macromolecules 2011, 44, 6649−6652. doi: 10.1021/ma201158d
-
[14]
Ma, Y.; Kang, Z.; Zheng, Q. Recent advances in wide bandgap semiconducting polymers for polymer solar cells. J. Mater. Chem. A 2017, 5, 1860−1872. doi: 10.1039/C6TA09325F
-
[15]
Qin, T.; Zang, Y.; Bai, W. Y.; Yao, K.; Xu, Y. X. The influence of oxygen atoms on conformation and π-π stacking of ladder-type donor-based polymers and their photovoltaic properties. Macromol. Rapid Commun. 2017, 38, 1700156. doi: 10.1002/marc.201700156
-
[16]
Wang, H. C.; Li, Q. Y.; Yin, H. B.; Ren, X.; Yao, K.; Zheng, Y.; Xu, Y. X. Synergistic effects of selenophene and extended ladder-type donor units for efficient polymer solar cells. Macromol. Rapid Commun. 2018, 39, 1700483. doi: 10.1002/marc.201700483
-
[17]
Xiao, Z.; Liu, F.; Geng, X.; Zhang, J.; Wang, S.; Xie, Y.; Li, Z.; Yang, H.; Yuan, Y.; Ding, L. A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci. Bull. 2017, 62, 1331−1336. doi: 10.1016/j.scib.2017.09.017
-
[18]
Xu, Y. X.; Chueh, C. C.; Yip, H. L.; Ding, F. Z.; Li, Y. X.; Li, C. Z.; Li, X.; Chen, W. C.; Jen, A. K. Y. Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. Adv. Mater. 2012, 24, 6356−6361. doi: 10.1002/adma.201203246
-
[19]
Zhang, Z. G.; Li, Y. Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Sci. China Chem. 2015, 58, 192−209. doi: 10.1007/s11426-014-5260-2
-
[20]
Zhang, M.; Guo, X.; Wang, X.; Wang, H.; Li, Y. Synthesis and photovoltaic properties of D-A copolymers based on alkyl-substituted indacenodithiophene donor unit. Chem. Mater. 2011, 23, 4264−4270. doi: 10.1021/cm2019586
-
[21]
Zhang, W.; Han, Y.; Zhu, X.; Fei, Z.; Feng, Y.; Treat, N. D.; Faber, H.; Stingelin, N.; McCulloch, I.; Anthopoulos, T. D.; Heeney, M. A novel alkylated indacenodithieno[3,2-b]thiophene-based polymer for high-performance field-effect transistors. Adv. Mater. 2016, 28, 3922−3927. doi: 10.1002/adma.201504092
-
[22]
Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.; Heeney, M.; Zhang, W.; McCulloch, I.; DeLongchamp, D. M. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat. Commun. 2013, 4, 2238. doi: 10.1038/ncomms3238
-
[23]
Chochos, C. L.; Katsouras, A.; Gasparini, N.; Koulogiannis, C.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Rational design of high-performance wide-bandgap (≈2 eV) polymer semiconductors as electron donors in organic photovoltaics exhibiting high open circuit voltages (≈ 1 V). Macromol. Rapid Commun. 2017, 38, 1600614. doi: 10.1002/marc.201600614
-
[24]
Wang, M.; Cai, D.; Yin, Z.; Chen, S. C.; Du, C. F.; Zheng, Q. Asymmetric-indenothiophene-based copolymers for bulk heterojunction solar cells with 9.14% efficiency. Adv. Mater. 2016, 28, 3359−3365. doi: 10.1002/adma.201505957
-
[25]
Liu, D.; Zhu, Q.; Gu, C.; Wang, J.; Qiu, M.; Chen, W.; Bao, X.; Sun, M.; Yang, R. High-performance photovoltaic polymers employing symmetry-breaking building blocks. Adv. Mater. 2016, 28, 8490−8498. doi: 10.1002/adma.201602857
-
[26]
Bai, W.; Xu, X.; Li, Q.; Xu, Y.; Peng, Q. Efficient nonfullerene polymer solar cells enabled by small-molecular acceptors with a decreased fused-ring core. Small Methods 2018, 2, 1700373. doi: 10.1002/smtd.201700373
-
[27]
Feng, S.; Zhang, C. E.; Liu, Y.; Bi, Z.; Zhang, Z.; Xu, X.; Ma, W.; Bo, Z. Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv. Mater. 2017, 29, 1703527. doi: 10.1002/adma.201703527
-
[28]
Cao, J.; Shan, T.; Wang, J. K.; Xu, Y. X.; Ren, X.; Zhong, H. Stereoisomerism of ladder-type acceptor molecules and its effect on photovoltaic properties. Dyes Pigments 2019, 165, 354−360. doi: 10.1016/j.dyepig.2019.02.046
-
[29]
Song, C. E.; Kim, Y. J.; Suranagi, S. R.; Kini, G. P.; Park, S.; Lee, S. K.; Shin, W. S.; Moon, S. J.; Kang, I. N.; Park, C. E.; Lee, J. C. Impact of the crystalline packing structures on charge transport and recombination via alkyl chain tunability of DPP-based small molecules in bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 2016, 8, 12940−12950. doi: 10.1021/acsami.6b01576
-
[30]
Fan, J.; Zhang, Y.; Lang, C.; Qiu, M.; Song, J.; Yang, R.; Guo, F.; Yu, Q.; Wang, J.; Zhao, L. Side chain effect on poly(beznodithiophene-co-dithienobenzoquinoxaline) and their applications for polymer solar cells. Polymer 2016, 82, 228−237. doi: 10.1016/j.polymer.2015.11.052
-
[31]
Liu, X.; Li, Q.; Li, Y.; Gong, X.; Su, S. J.; Cao, Y. Indacenodithiophene core-based small molecules with tunable side chains for solution-processed bulk heterojunction solar cells. J. Mater. Chem. A 2014, 2, 4004−4013. doi: 10.1039/c3ta14659f
-
[32]
Liu, D.; Wang, J.; Gu, C.; Li, Y.; Bao, X.; Yang, R. Stirring up acceptor phase and controlling morphology via choosing appropriate rigid aryl rings as lever arms in symmetry-breaking benzodithiophene for high-performance fullerene and fullerene-free polymer solar cells. Adv. Mater. 2018, 30, 1705870. doi: 10.1002/adma.201705870
-
[33]
Zhu, T.; Wan, Y.; Guo, Z.; Johnson, J.; Huang, L. Two birds with one stone: tailoring singlet fission for both triplet yield and exciton diffusion length. Adv. Mater. 2016, 28, 7539−7547. doi: 10.1002/adma.201600968
-
[1]
计量
- PDF下载量: 0
- 文章访问数: 4248
- HTML全文浏览量: 129