Citation: Hong-Jun Yang, Chen-Qiong Chai, Yong-Kang Zuo, Jin-Feng Huang, Yi-Ye Song, Li Jiang, Wen-Yan Huang, Qi-Min Jiang, Xiao-Qiang Xue, Bi-Biao Jiang. Hybrid Copolymerization via the Combination of Proton Transfer and Ring-opening Polymerization[J]. Chinese Journal of Polymer Science, ;2020, 38(3): 231-239. doi: 10.1007/s10118-020-2341-x shu

Hybrid Copolymerization via the Combination of Proton Transfer and Ring-opening Polymerization

  • Phosphazene base, t-BuP2, was employed to catalyze the proton transfer polymerization (PTP) of 2-hydroxyethyl acrylate (HEA), and PTP was further combined with ring-opening polymerization (ROP) to exploit a new type of hybrid copolymerization. The studies on homo-polymerization showed that t-BuP2 was a particularly efficient catalyst for the polymerization of HEA at room temperature, giving an excellent monomer conversion. Throughout the polymerization, transesterification reactions were unavoidable, which increased the randomness in the structures of the resulting polymers. The studies on copolymerization showed that t-BuP2 could simultaneously catalyze the hybrid copolymerization via the combination of PTP and ROP at 25 °C. During copolymerization, HEA not only provided hydroxyl groups to initiate the ROP of ε-caprolactone (CL) but also participated in the polymerization as a monomer for PTP. The copolymer composition was approximately equal to the feed ratio, demonstrating the possibility to adjust the polymeric structure by simply changing the monomer feed ratio. This copolymerization reaction provides a simple method for synthesizing degradable functional copolymers from commercially available materials. Hence, it is important not only in polymer chemistry but also in environmental and biomedical engineering.
  • 加载中
    1. [1]

      Flory, P. J. Principles of polymer chemistry. Cornell University Press, New York, 1953. p.178.

    2. [2]

      Sanford, M. J.; Zee, N. J. V.; Coates, G. W. Reversible-deactivation anionic alternating ring-opening copolymerization of epoxides and cyclic anhydrides: access to orthogonally functionalizable multiblock aliphatic polyesters. Chem. Sci. 2018, 9, 134−142.  doi: 10.1039/C7SC03643D

    3. [3]

      Guégain, E.; Tran, J.; Deguettes, Q.; Nicolas, J. Degradable polymer prodrugs with adjustable activity from drug-initiated radical ring-opening copolymerization. Chem. Sci. 2018, 9, 8291−8306.  doi: 10.1039/C8SC02256A

    4. [4]

      Hagiopol, C. Copolymerization: toward a systematic approach. Kluwer Academic/Plenum Publishers, New York, 1999. p.10.

    5. [5]

      Saini, P. Fundamentals of conjugated polymer blends, copolymers and composites: synthesis, properties and applications. John Wiley Sons. Inc., Massachusetts, 2015. p. 11.

    6. [6]

      Rzaev, Z. M. O. Complex-radical copolymerization of N-vinyl pyrrolidone with isostructural analogs of maleic anhydride. Prog. Polym. Sci. 2000, 25, 163−217.  doi: 10.1016/S0079-6700(99)00027-1

    7. [7]

      Baskaran, D.; Muller, A. Anionic vinyl polymerization—50 years after Michael Szwarc. Prog. Polym. Sci. 2007, 32, 173−219.  doi: 10.1016/j.progpolymsci.2007.01.003

    8. [8]

      Bednarek, M. Branched aliphatic polyesters by ring-opening (co)polymerization. Prog. Polym. Sci. 2016, 58, 27−58.  doi: 10.1016/j.progpolymsci.2016.02.002

    9. [9]

      Zhang, G. Hybrid copolymerization. Acta Polymerica Sinica (in Chinese) 2018, 668−673.

    10. [10]

      Song, Q.; Hu, S.; Zhao, J.; Zhang, G. Organocatalytic copolymerization of mixed type monomers. Chinese J. Polym. Sci. 2017, 35, 581−601.  doi: 10.1007/s10118-017-1925-6

    11. [11]

      Saegusa, T. Spontaneous alternating copolymerization via zwitterion intermediates. Angew. Chem. Int. Ed. 1997, 1977, 826−835.

    12. [12]

      Rivas, B. L.; Canessa, G. S.; Pooley, S. A. Spontaneous copolymerization via zwitterion 1.2-methyl-2-oxazoline and succinic anhydride. Polym. Bull. 1983, 9, 417−422.

    13. [13]

      Bailey, W. J.; Ni, Z.; Wu, S. R. Synthesis of poly-ε-caprolactone via a free radical mechanism. Free radical ring-opening polymerization of 2-methylene-1,3-dioxepane. J. Polym. Sci., Part A: Polym. Chem. 1985, 20, 3021−3030.

    14. [14]

      Sinnwell, S.; Ritter, H. Ring-opening homo-and copolymerization of α-methylene-ε-caprolactone. Macromolecules 2006, 39, 2804−2807.  doi: 10.1021/ma0527146

    15. [15]

      Kanazawa, A.; Kanaoka, S.; Aoshima, S. Concurrent cationic vinyl-addition and ring-opening copolymerization using B(C6F5)3 as a catalyst: copolymerization of vinyl ethers and isobutylene oxide via crossover propagation reactions. J. Am. Chem. Soc. 2013, 135, 9330−9333.  doi: 10.1021/ja404616c

    16. [16]

      Kanazawa, A.; Kanaoka, S.; Aoshima, S. Rational design of oxirane monomers for efficient crossover reactions in concurrent cationic vinyl-addition and ring-opening copolymerization with vinyl ethers. Macromolecules 2014, 47, 6635−6644.  doi: 10.1021/ma501707a

    17. [17]

      Kanazawa, A.; Kanda, S.; Kanaoka, S.; Aoshima, S. Alkoxyoxirane, a unique cyclic monomer: controlled cationic homopolymerization mediated by long-lived species and copolymerization with vinyl ether via alkoxy group transfer. Macromolecules 2014, 47, 8531−8540.  doi: 10.1021/ma502151q

    18. [18]

      Kanazawa, A.; Aoshima, S. Cationic terpolymerization of vinyl ethers, oxetane, and ketones via concurrent vinyl-addition, ring-opening, and carbonyl-addition mechanisms: multiblock polymer synthesis and mechanistic investigation. Macromolecules 2017, 50, 6595−6605.  doi: 10.1021/acs.macromol.7b01250

    19. [19]

      Miyamae, Y.; Kanazawa, A.; Tamaso, K. I.; Morino, K.; Ogawa, R.; Aoshima, S. The influence of the substituents of oxiranes on copolymerization with vinyl ethers via concurrent cationic vinyl-addition and ring-opening mechanisms. Polym. Chem. 2018, 9, 404−413.  doi: 10.1039/C7PY01292F

    20. [20]

      Yang, H.; Xu, J.; Pispas, S.; Zhang, G. Hybrid copolymerization of ε-caprolactone and methyl methacrylate. Macromolecules 2012, 45, 3312−3317.  doi: 10.1021/ma300291q

    21. [21]

      Zhang, G.; Ma, C. 2017, U. S. Pat., 9701794B2.

    22. [22]

      Yang, H.; Bai, T.; Xue, X.; Huang, W.; Chen, J.; Qian, X.; Zhang, G.; Jiang, B. A versatile strategy for synthesis of hyperbranched polymers with commercially available methacrylate inimer. RSC Adv. 2015, 5, 60401−60408.  doi: 10.1039/C5RA09851C

    23. [23]

      Yang, H.; Bai, T.; Xue, X.; Huang, W.; Chen, J.; Qian, X.; Zhang, G.; Jiang, B. A simple route to vinyl-functionalized hyperbranched polymers: self-condensing anionic copolymerization of allyl methacrylate and hydroxyethyl methacrylate. Polymer 2015, 72, 63−68.  doi: 10.1016/j.polymer.2015.06.048

    24. [24]

      Yang, H.; Zhang, J.; Zuo, Y.; Song, Y.; Huang, W.; Jiang, L.; Jiang, Q.; Xue, X.; Jiang, B. Anionic hybrid copolymerization via concurrent oxa-Michael addition and ring-opening polymerizations. Macromol. Chem. Phys. 2019, 1900147.  doi: 10.1002/macp.201900147

    25. [25]

      Breslow, D.; Hulse, G.; Matlack, A. Synthesis of poly-β-alanine from acrylamide. A novel synthesis of β-alanine. J. Am. Chem. Soc. 1957, 79, 3760−3763.  doi: 10.1021/ja01571a039

    26. [26]

      Ogata, N. The transition polymerization of acrylamide. I. On the polymerization condition and the property of polymer. B. Chem. Soc. Jpn. 1960, 33, 906−912.  doi: 10.1246/bcsj.33.906

    27. [27]

      Saegusa, T.; Kobayashi, S.; Kimura, Y. Hydrogen-transfer polymerization of hydroxyalkyl acrylates. Macromolecule 1975, 8, 950−952.  doi: 10.1021/ma60048a051

    28. [28]

      Hong, M.; Chen, E. Y. X. Proton-transfer polymerization (HTP): converting methacrylates to polyesters by an N-heterocyclic carbene. Angew. Chem. Int. Ed. 2014, 126, 12094−12100.  doi: 10.1002/ange.201406630

    29. [29]

      Matsuoka, S. I.; Namera, S.; Suzuki, M. Oxa-Michael addition polymerization of acrylates catalyzed by N-heterocyclic carbenes. Polym. Chem. 2015, 6, 294−301.  doi: 10.1039/C4PY01184H

    30. [30]

      Murase, T.; Matsuoka, S. I.; Suzuki, M. Hydrogen-transfer and condensation-addition polymerizations of acrylic acid. Polym. Chem. 2018, 9, 2984−2990.  doi: 10.1039/C8PY00271A

    31. [31]

      Roos, K.; Planes, M.; Bakkali-Hassani, C.; Mehats, J.; Vax, A.; Carlotti, S. Solvent-free anionic polymerization of acrylamide: a mechanistic study for the rapid and controlled synthesis of polyamide-3. Macromolecules 2016, 49, 2039−2045.  doi: 10.1021/acs.macromol.5b02410

    32. [32]

      Rozenberg, B. A. Proton-transfer anionic polymerization of vinyl monomers. Des. Monomers Polym. 2004, 7, 135−150.  doi: 10.1163/156855504322890106

    33. [33]

      Boileau, S.; Illy, N. Activation in anionic polymerization: why phosphazene bases are very exciting promoters. Prog. Polym. Sci. 2011, 36, 1132−1151.  doi: 10.1016/j.progpolymsci.2011.05.005

    34. [34]

      Alamri, H.; Zhao, J.; Pahovnik, D.; Hadjichristidis, N. Phosphazene-catalyzed ring-opening polymerization of ε-caprolactone: Influence of solvents and initiators. Polym. Chem. 2014, 5, 5471−5478.  doi: 10.1039/C4PY00493K

    35. [35]

      Zhao, J.; Alamri, H.; Hadjichristidis, N. A facile metal-free "grafting-from" route from acrylamide-based substrate toward complex macromolecular combs. Chem. Commun. 2013, 49, 7079−7081.  doi: 10.1039/c3cc44131h

    36. [36]

      Zhao, J.; Pahovnik, D.; Gnanou, Y.; Hadjichristidis, N. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide Initiated by carboxylic acid. Macromolecules. 2014, 47, 1693−1698.  doi: 10.1021/ma500067j

    37. [37]

      Zhao, J.; Hadjichristidis, N. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides. Polym. Chem. 2015, 6, 2659−2668.  doi: 10.1039/C5PY00019J

    38. [38]

      Hu, S.; Dai, G.; Zhao, J. Zhang, G. Ring-opening alternating copolymerization of epoxides and dihydrocoumarin catalyzed by a phosphazene superbase. Macromolecules. 2016, 49, 4462−4472.  doi: 10.1021/acs.macromol.6b00840

    39. [39]

      Zhang, L.; Nederberg, F.; Pratt, R. C.; Waymouth, R. M.; Hedrick, J. L.; Wade, C. G. Phosphazene bases: a new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules 2007, 40, 4154−4158.  doi: 10.1021/ma070316s

    40. [40]

      Yang, H.; Bai, T.; Xue, X.; Huang, W.; Chen, J.; Jiang, B. Synthesis of metal-free poly(p-dioxanone) by phosphazene base catalyzed ring-opening polymerization. J. Appl. Polym. Sci. 2016, 133, 43030.

    41. [41]

      Isono, T.; Asai, S.; Satoh, Y.; Takaoka, T.; Tajima, K.; Kakuchi, T.; Satoh, T. Controlled/living ring-opening polymerization of glycidylamine derivatives using t-Bu-P4/alcohol initiating system leading to polyethers with pendant primary, secondary, and tertiary amino Groups. Macromolecules 2015, 48, 3217−3229.  doi: 10.1021/acs.macromol.5b00556

    42. [42]

      Misaka, H.; Sakai, R.; Satoh, T.; Kakuchi, T. Synthesis of high molecular weight and end-functionalized poly(styrene oxide) by living ring-opening polymerization of styrene oxide using the alcohol/phosphazene base initiating system. Macromolecules 2011, 44, 9099−9107.  doi: 10.1021/ma202115w

    43. [43]

      Yang, H.; Zuo, Y.; Zhang, J.; Song, Y.; Huang, W.; Xue, X.; Jiang, Q.; Sun, A.; Jiang, B. Phosphazene-catalyzed oxa-Michael addition click polymerization. Polym. Chem. 2018, 9, 4716−4723.  doi: 10.1039/C8PY01089G

    44. [44]

      Gibas, M.; Korytkowska-Walach, A. Polymerization of 2-hydroxyethyl acrylate and methacrylate via Michael-type addition. Polym. Bull. 2003, 51, 17−22.  doi: 10.1007/s00289-003-0191-7

    45. [45]

      Wallach, J. A.; Huang, S. J. Copolymers of itaconic anhydride and methacrylate-terminated poly(lactic acid) macromonomers. Biomacromolecules 2000, 1, 174−179.

  • 加载中
    1. [1]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    4. [4]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    5. [5]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    6. [6]

      Rui WangYuan TianXuefeng GaoLei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395

    7. [7]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    8. [8]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    9. [9]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    10. [10]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    11. [11]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    12. [12]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    13. [13]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    14. [14]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    15. [15]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    16. [16]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    17. [17]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    18. [18]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    19. [19]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    20. [20]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

Metrics
  • PDF Downloads(0)
  • Abstract views(923)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return