Citation: Lei Xiong, Yuan-Fang Hu, Zi-Gui Zheng, Zai-Lai Xie, Dong-Yang Chen. Chloromethylation and Quaternization of Poly(aryl ether ketone sulfone)s with Clustered Electron-rich Phenyl Groups for Anion Exchange Membranes[J]. Chinese Journal of Polymer Science, ;2020, 38(3): 278-287. doi: 10.1007/s10118-020-2340-y shu

Chloromethylation and Quaternization of Poly(aryl ether ketone sulfone)s with Clustered Electron-rich Phenyl Groups for Anion Exchange Membranes

  • Ion segregation is critically important for achieving high ion conductivity for anion exchange membranes (AEMs). Herein, a new bisphenol monomer bearing ten electron-rich phenyl groups was designed and polymerized with various amounts of electron-deficient 4,4′-dihydroxydiphenylsulfone and 4,4′-difluorobenzophenone to yield dense and selective reaction sites for chloromethylation and quaternization. As the most challenging step, chloromethylation was optimized by tuning the reaction temperature, reaction time, and reactant ratios. Ion exchange capacity, water uptake, anion conductivity, mechanical stability, and alkaline stability of the resulting AEMs were characterized in detail. It is found that chloromethylation reaction needed to be carried out at low equivalent of chloromethylation agents to avoid undesirable crosslinking. The QA-PAEKS-20 sample with an IEC of 1.19 mmol·g−1 exhibited a Cl conductivity of 11.2 mS·cm−1 and a water uptake of 30.2% at 80 °C, which are promising for AEM applications.
  • 加载中
    1. [1]

      Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981−1007.  doi: 10.1016/j.apenergy.2010.09.030

    2. [2]

      Shin, D. W.; Guiver, M. D.; Lee, Y. M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem. Rev. 2017, 117, 4759−4805.  doi: 10.1021/acs.chemrev.6b00586

    3. [3]

      Scofield, M. E.; Liu, H. Q.; Wong, S. S. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 2015, 44, 5836−5860.  doi: 10.1039/C5CS00302D

    4. [4]

      Mauritz, K. A.; Moore, R. B. State of understanding of Nafion. Chem. Rev. 2004, 104, 4535−4585.  doi: 10.1021/cr0207123

    5. [5]

      Elabd, Y. A.; Hickner, M. A. Block copolymers for fuel cells. Macromolecules 2011, 44, 1−11.  doi: 10.1021/ma101247c

    6. [6]

      Xu, T. Ion exchange membranes: state of their development and perspective. J. Membr. Sci. 2005, 263, 1−29.  doi: 10.1016/j.memsci.2005.05.002

    7. [7]

      Kreuer, K. D. Ion conducting membranes for fuel cells and other electrochemical devices. Chem. Mater. 2014, 26, 361−380.  doi: 10.1021/cm402742u

    8. [8]

      Wang, Y. J.; Qiao, J. L.; Baker, R.; Zhang, J. J. Alkaline polymer electrolyte membranes for fuel cell applications. Chem. Soc. Rev. 2013, 42, 5768−5787.  doi: 10.1039/c3cs60053j

    9. [9]

      Olson, T. S.; Pylypenko, S.; Atanassov, P.; Asazawa, K.; Yamada, K.; Tanaka, H. Anion-exchange membrane fuel cells: dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt-polypyrrole electrocatalysts. J. Phys. Chem. C 2010, 114, 5049−5059.

    10. [10]

      Sanabriachinchilla, J.; Asazawa, K.; Sakamoto, T.; Yamada, K.; Tanaka, H.; Strasser, P. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways. J. Am. Chem. Soc. 2011, 133, 5425−5431.  doi: 10.1021/ja111160r

    11. [11]

      Pan, J.; Chen, C.; Zhuang, L.; Lu, J. T. Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc. Chem. Res. 2012, 45, 471−483.

    12. [12]

      Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628−7658.  doi: 10.1039/C7CS00690J

    13. [13]

      Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K.; Xu, T. W.; Zhuang, L. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 2014, 7, 3135−3191.  doi: 10.1039/C4EE01303D

    14. [14]

      Wu, X.; Scott, K. A non-precious metal bifunctional oxygen electrode for alkaline anion exchange membrane cells. J. Power Sources 2012, 206, 14−19.  doi: 10.1016/j.jpowsour.2011.12.052

    15. [15]

      Li, N. W.; Yan, T. Z.; Li, Z.; Thurn-Albrecht, T.; Binder, W. H. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy Environ. Sci. 2012, 5, 7888−7892.  doi: 10.1039/c2ee22050d

    16. [16]

      Lin, C. X.; Zhuo, Y. Z.; Lai, A. N.; Zhang, Q. G.; Zhu, A. M.; Ye, M. L.; Liu, Q. L. Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene oxide) for fuel cells. J. Membr. Sci. 2016, 513, 206−216.  doi: 10.1016/j.memsci.2016.04.054

    17. [17]

      Hibbs, M. R.; Fujimoto, C. H.; Cornelius, C. J. Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules 2015, 42, 8316−8321.

    18. [18]

      Wang, G. G.; Weng, Y. M.; Chu, D.; Xie, D.; Chen, R. R. Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications. J. Membr. Sci. 2009, 326, 4−8.  doi: 10.1016/j.memsci.2008.09.037

    19. [19]

      Varcoe, J. R.; Slade, R. C. T.; Yee, E. L. H. An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem. Commun. 2006, 3, 1428−1429.

    20. [20]

      Weiber, A.; Meis, D.; Jannasch, P. Anion conducting multiblock poly(arylene ether sulfone)s containing hydrophilic segments densely functionalized with quaternary ammonium groups. Polym. Chem. 2015, 6, 1986−1996.  doi: 10.1039/C4PY01588F

    21. [21]

      Wang, C. Y.; Shen, B.; Xu, C.; Zhao, X. Y.; Li, J. Side-chain-type poly(arylene ether sulfone)s containing multiple quaternary ammonium groups as anion exchange membranes. J. Membr. Sci. 2015, 492, 281−288.  doi: 10.1016/j.memsci.2015.05.060

    22. [22]

      Robertson, N. J.; Kostalik IV, H. A.; Clark, T. J.; Mutolo, P. F.; Abruña, H. D.; Coates, G. W. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. J. Am. Chem. Soc. 2010, 132, 3400−3404.  doi: 10.1021/ja908638d

    23. [23]

      Chen, Y.; Lin, Q. L.; Zheng, Y. Y.; Yu, Y.; Chen, D. Y. Densely quaternized anion exchange membranes synthesized from Ullmann coupling extension of ionic segments for vanadium redox flow batteries. Sci. China Mater. 2019, 62, 211−224.  doi: 10.1007/s40843-018-9299-y

    24. [24]

      Tsai, T. H.; Maes, A. M.; Vandiver, M. A.; Versek, C.; Seifert, S.; Tuominen, M.; Liberatore, M. W.; Herring, A. M.; Coughlin, E. B. Synthesis and structure-conductivity relationship of polystyrene-block-poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1751−1760.  doi: 10.1002/polb.23170

    25. [25]

      Kim, D. J.; Lee, B. N.; Sang, Y. N. Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell. Int. J. Hydrogen Energy 2017, 42, 23759−23767.  doi: 10.1016/j.ijhydene.2017.02.199

    26. [26]

      Lin, B. C.; Qiu, L. H.; Qiu, B.; Peng, Y.; Yan, F. A soluble and conductive polyfluorene ionomer with pendant imidazolium groups for alkaline fuel cell applications. Macromolecules 2011, 44, 9642−9649.  doi: 10.1021/ma202159d

    27. [27]

      Gu, F. L.; Dong, H. L.; Li, Y. Y.; Sun, Z.; Yan, F. Base stable pyrrolidinium cations for alkaline anion exchange membrane applications. Macromolecules 2014, 47, 6740−6747.  doi: 10.1021/ma5015148

    28. [28]

      Wang, J. H.; Li, S. H.; Zhang, S. B. Novel Hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 2010, 43, 3890−3896.  doi: 10.1021/ma100260a

    29. [29]

      Gu, S.; Cai, R.; Yan, Y. S. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chem. Commun. 2011, 47, 2856−2858.  doi: 10.1039/c0cc04335d

    30. [30]

      Stokes, K. K.; Orlicki, J. A.; Beyer, F. L. RAFT polymerization and thermal behavior of trimethylphosphonium polystyrenes for anion exchange membranes. Polym. Chem. 2011, 2, 80−82.  doi: 10.1039/C0PY00293C

    31. [31]

      Chen, D. Y.; Hickner, M. A. Ion clustering in quaternary ammonium functionalized benzylmethyl containing poly(arylene ether ketone)s. Macromolecules 2013, 46, 9270−9278.  doi: 10.1021/ma401620m

    32. [32]

      Zhao, Z.; Wang, J. H.; Li, S. H.; Zhang, S. B. Synthesis of multi-block poly(arylene ether sulfone) copolymer membrane with pendant quaternary ammonium groups for alkaline fuel cell. J. Power Sources 2011, 196, 4445−4450.  doi: 10.1016/j.jpowsour.2011.01.081

    33. [33]

      Shen, K. Z.; Zhang, Z. P.; Zhang, H. B.; Pang, J. H.; Jiang, Z. H. Poly(arylene ether ketone) carrying hyperquaternized pendants: preparation, stability and conductivity. J. Power Sources 2015, 287, 439−447.  doi: 10.1016/j.jpowsour.2015.04.017

    34. [34]

      Chen, Y.; Liu, Z. C.; Lin, M. J.; Li, Q. L.; Tong, B. H.; Chen, D. Y. Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries. Sci. China Chem. 2019, 62, 479−490.  doi: 10.1007/s11426-018-9390-6

    35. [35]

      Yan, J. L.; Zhu, L.; Chaloux, B. L.; Hickner, M. A. Anion exchange membranes by bromination of tetramethyl biphenol-based poly(sulfone)s. Polym. Chem. 2017, 8, 2442−2449.  doi: 10.1039/C7PY00026J

    36. [36]

      Tanaka, M.; Koike, M.; Miyatake, K.; Watanabe, M. Anion conductive aromatic ionomers containing fluorenyl groups. Macromolecules 2012, 43, 2657−2659.

    37. [37]

      Zeng, Q. H.; Liu, Q. L.; Broadwell, I.; Zhu, A. M.; Xiong, Y.; Tu, X. P. Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells. J. Membr. Sci. 2010, 349, 237−243.  doi: 10.1016/j.memsci.2009.11.051

    38. [38]

      Hu, Y. F.; Wang, B. X.; Li, X.; Chen, D. Y.; Zhang, W. Y. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes. J. Power Sources 2018, 387, 33−42.  doi: 10.1016/j.jpowsour.2018.03.060

    39. [39]

      Fujimoto, C. H.; Hickner, M. A.; Cornelius, C. J.; Loy, D. A. Ionomeric poly(phenylene) prepared by Diels-Alder polymerization: synthesis and physical properties of a novel polyelectrolyte. Macromolecules 2005, 38, 5010−5016.  doi: 10.1021/ma0482720

    40. [40]

      Chen, D. Y.; Hickner, M. A.; Agar, E.; Kumbur, E. C. Optimized anion exchange membranes for vanadium redox flow batteries. ACS Appl. Mater. Interfaces 2013, 5, 7559−7566.  doi: 10.1021/am401858r

    41. [41]

      Wright, M. E.; Toplikar, E. G.; Svejda, S. A. Details concerning the chloromethylation of soluble high-molecular-weight polystyrene using dimethoxymethane, thionyl chloride, and a Lewis acid: A full analysis. Macromolecules 1991, 24, 5879−5880.  doi: 10.1021/ma00021a025

    42. [42]

      Sata, T. Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis e effect of hydrophilicity of anion exchange membranes on permselectivity of anions. J. Membr. Sci. 2000, 167, 1−31.  doi: 10.1016/S0376-7388(99)00277-X

    43. [43]

      Amel, A.; Gavish, N.; Zhu, L.; Dekel, D. R.; Hickner, M. A.; Ein-Eli, Y. Bicarbonate and chloride anion transport in anion exchange membranes. J. Membr. Sci. 2016, 514, 125−134.  doi: 10.1016/j.memsci.2016.04.027

    44. [44]

      Li, X.; Liu, Q.; Yu, Y.; Meng, Y. Quaternized poly(arylene ether) ionomers containing triphenyl methane groups for alkaline anion exchange membranes. J. Mater. Chem. A 2013, 1, 4324−4335.  doi: 10.1039/c3ta00342f

    45. [45]

      Gopi, K. H.; Peera, S. G.; Bhat, S. D.; Sridhar, P.; Pitchumani, S. Preparation and characterization of quaternary ammonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) as anion exchange membrane for alkaline polymer electrolyte fuel cells. Int. J. Hydrogen Energy 2014, 39, 2659−2668.  doi: 10.1016/j.ijhydene.2013.12.009

    46. [46]

      Zhang, J. J.; He, Y. B.; Liang, X.; Ge, X. L.; Zhu, Y.; Hu, M.; Yang, Z. J.; Wu, L.; Xu, T. W. Towards the gemini cation anion exchange membranes by nucleophilic substitution reaction. Sci. China Mater. 2019, 62, 973−981.  doi: 10.1007/s40843-018-9397-0

    47. [47]

      Gandomi, Y. A.; Aaron, D. S.; Mench, M. M. Coupled membrane transport parameters for ionic species in all-vanadium redox flow batteries. Electrochim. Acta 2016, 218, 174−190.  doi: 10.1016/j.electacta.2016.09.087

    48. [48]

      Liu, J. F.; Yan, X. M.; Gao, L.; Hu, L.; Wu, X. M.; Dai, Y.; Ruan, X. H.; He, G. H. Long-branched and densely functionalized anion exchange membranes for fuel cells. J. Membr. Sci. 2019, 581, 82−92.  doi: 10.1016/j.memsci.2019.03.046

    49. [49]

      Arges, C. G.; Ramani, V. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. PNAS 2013, 110, 2490−2495.  doi: 10.1073/pnas.1217215110

    50. [50]

      Xiao, L.; Zhang, S.; Pan, J.; Yang, C. X.; He, M. L.; Zhuang, L.; Lu, J. T. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ. Sci. 2012, 5, 7869−7871.  doi: 10.1039/c2ee22146b

  • 加载中
    1. [1]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    2. [2]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    3. [3]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    4. [4]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    5. [5]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    6. [6]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    7. [7]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    8. [8]

      Yu ZhouLin-Tao JiangXiao-Ming JiangBin-Wen LiuGuo-Cong Guo . Mixed-anion square-pyramid [SbS3I2] units causing strong second-harmonic generation intensity and large birefringence. Chinese Chemical Letters, 2025, 36(4): 109740-. doi: 10.1016/j.cclet.2024.109740

    9. [9]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    10. [10]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    11. [11]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    12. [12]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    13. [13]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    14. [14]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    15. [15]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    16. [16]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    17. [17]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    18. [18]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    19. [19]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    20. [20]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

Metrics
  • PDF Downloads(0)
  • Abstract views(880)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return