Citation: Chao Qian, Zhen-Guo Fan, Wei-Wen Zheng, Run-Xin Bei, Tian-Wen Zhu, Si-Wei Liu, Zhen-Guo Chi, Matthew P. Aldred, Xu-Dong Chen, Yi Zhang, Jia-Rui Xu. A Facile Strategy for Non-fluorinated Intrinsic Low-k and Low-loss Dielectric Polymers: Valid Exploitation of Secondary Relaxation Behaviors[J]. Chinese Journal of Polymer Science, ;2020, 38(3): 213-219. doi: 10.1007/s10118-020-2339-4 shu

A Facile Strategy for Non-fluorinated Intrinsic Low-k and Low-loss Dielectric Polymers: Valid Exploitation of Secondary Relaxation Behaviors

  • Corresponding author: Yi Zhang, ceszy@mail.sysu.edu.cn
  • Received Date: 14 June 2019
    Revised Date: 27 July 2019
    Available Online: 22 October 2019

  • High-performance low-k and low-loss circuit materials are urgently needed in the field of microelectronics due to the upcoming Fifth-Generation Mobile Communications Technology (5G Technology). Herein, a facile design strategy for non-fluorinated intrinsic low-k and low-loss polyimides is reported by fully considering the secondary relaxation behaviors of the polymer chains. A new amorphous non-fluorinated polymer (TmBPPA) with a k value of 2.23 and a loss tangent lower than 3.94 × 10−3 at 104 Hz has been designed and synthesized, which to the best of our knowledge is the lowest value amongst the non-fluorinated and non-porous polymers reported in literature. Meanwhile, TmBPPA exhibits excellent overall properties, such as excellent thermostability, good mechanical properties, low moisture absorption, and high bonding strength. As high-performance flexible circuit materials, all these characteristics are highly expected to meet the present and future demands for high density, high speed, and high frequency electronic circuit used in 5G wireless networks.
  • 加载中
    1. [1]

      Volksen, W.; Miller, R. D.; Dubois, G. Low dielectric constant materials. Chem. Rev. 2010, 110, 56−110.  doi: 10.1021/cr9002819

    2. [2]

      Maier, G. Low dielectric constant polymers for microeletronics. Prog. Polym. Sci. 2001, 26, 3−65.  doi: 10.1016/S0079-6700(00)00043-5

    3. [3]

      Miller, R. D. In search of low-k dielectrics. Science 1999, 286, 421−423.  doi: 10.1126/science.286.5439.421

    4. [4]

      Hecht, J. The bandwidth bottleneck that is throttling the internet. Nature News 2016, 536, 139−142.  doi: 10.1038/536139a

    5. [5]

      Andrews, J. G.; Stefano, B.; Wan, C.; Stephen, V. H.; Angel, L.; Anthony, C. K. S.; Zhang, J. C. What will 5G be? IEEE Journal on Selected Areas in Communications 2014, 32, 1065−1082.  doi: 10.1109/JSAC.2014.2328098

    6. [6]

      Shamiryan, D.; Abell, T.; Iacopi, F.; Maex, K. Low-k dielectric materials. Mater. Today 2004, 7, 34−39.

    7. [7]

      Morgen, E. M.; Ryan, T.; Zhao, J. Hua.; Hu, C.; Cho, T.; Ho, P. S. Low dielectric constant materials for ULSI interconnects. Annu. Rev. Mater. Sci. 2000, 30, 645−680.  doi: 10.1146/annurev.matsci.30.1.645

    8. [8]

      Kohl, P. A. Low-dielectric constant insulators for future integrated circuits and packages. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 379−401.  doi: 10.1146/annurev-chembioeng-061010-114137

    9. [9]

      Zhang, G. X.; Tkatchenko, A.; Paier, J.; Appel, H.; Scheffler, M. Van der Waals interactions in ionic and semiconductor solids. Phy. Rev. Lett. 2011, 107, 245501.  doi: 10.1103/PhysRevLett.107.245501

    10. [10]

      Krause, B.; Diekmann, K.; van der Vegt, N. F. A.; Wessling, M. Open nanoporous morphologies from polymeric blends by carbon dioxide foaming. Macromolecules 2002, 35, 1738−1745.  doi: 10.1021/ma011672s

    11. [11]

      Krause, B.; Koops, G. H.; van der Vegt, N. F. A.; Wessling, M.; Wubbenhorst, M.; van Turnhout, J. Ultralow-k dielectrics made by supercritical foaming of thin polymer films. Adv. Mater. 2002, 14, 1041−1046.  doi: 10.1002/1521-4095(20020805)14:15<1041::AID-ADMA1041>3.0.CO;2-A

    12. [12]

      Long, T. M.; Swager, T. M. Molecular design of free volume as a route to low-k dielectric materials. J. Am. Chem. Soc. 2003, 125, 14113−14119.  doi: 10.1021/ja0360945

    13. [13]

      Eslava, S.; Urrutia, J.; Busawon, A. N.; Baklanov, M. R.; Lacopi, F.; Aldea, S.; Maex, K.; Martens, J. A.; Kirschhock, C. E. A. Zeolite-inspired low-k dielectrics overcoming limitations of zeolite films. J. Am. Chem. Soc. 2008, 130, 17528−17536.  doi: 10.1021/ja8066572

    14. [14]

      Ro, H. W.; Char, K.; Jeon, E.; Kim, H. J.; Kwon, D.; Lee, H. J.; Lee, J. K.; Rhee, H. W.; Soles, C.; Yoon, D. Y. High-modulus spin-on organosilicate glasses for nanoporous applications. Adv. Mater. 2007, 19, 705−710.  doi: 10.1002/adma.200601528

    15. [15]

      Connor, E. F.; Sundberg, L. K.; Kim, H. C.; Cornelissen, J. J.; Magbitang, T.; Rice, P. M.; Lee, V. Y.; Hawker, C. J.; Volksen, W.; Hedrick, J. L.; Miller, R. D. Templating of silsesquioxane cross-linking using unimolecular self-organizing polymers. Angew. Chem. Int. Ed. 2003, 115, 3915−3918.  doi: 10.1002/ange.200350930

    16. [16]

      Lee, Y. K.; Murarka, S. P.; Jeng, S. P.; Auman, B. Investigations of the low dielectric constant fluorinated polyimide for use as the interlayer dielectric in ULSI. Materials Research Society Symposium Proceedings 1995, 381, 31−43.  doi: 10.1557/PROC-381-31

    17. [17]

      Lee, Y. K.; Murarka, S. P.; Auman, B. Thermal curing conditions for low k-fluorinated polyimide film for use as the interlayer dielectric in ULSI. Materials Research Society Symposium Proceedings 1996, 443, 71−77.  doi: 10.1557/PROC-443-71

    18. [18]

      Dubois, G.; Volksen, W.; Magbitang, T.; Miller, R. D.; Gage, D. M.; Dauskardt, R. H. Molecular network reinforcement of sol-gel glasses. Adv. Mater. 2007, 19, 3989−3994.  doi: 10.1002/adma.200701193

    19. [19]

      Mary, A. B. M.; Wright, S.; Sandberg, A.; Nguyen, B. N.; Van Keuls, F. W.; Mueller, C. H.; Rodríguez-Solís, R.; Miranda, F. A. Low dielectric polyimide aerogels as substrates for lightweight patch antennas. ACS Appl. Mater. Interfaces 2012, 4, 6346−6353.  doi: 10.1021/am301985s

    20. [20]

      Liu, Y.; Zhang, Y.; Lan, Q.; Liu, S.; Qin, Z.; Chen, L.; Zhao, C.; Chi, Z.; Xu, J.; Economy, J. High-performance functional polyimides containing rigid nonplanar conjugated triphenylethylene moieties. Chem. Mater. 2012, 24, 1212−1222.  doi: 10.1021/cm3003172

    21. [21]

      Liu, Y.; Qian, C.; Qu, L.; Wu, Y.; Zhang, Y.; Wu, X.; Zou, B.; Chen, W.; Chen, Z.; Chi, Z.; Liu, S.; Chen, X.; Xu, J. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem. Mater. 2015, 27, 6543−6549.  doi: 10.1021/acs.chemmater.5b01798

    22. [22]

      Taki, K.; Hosokawa, K.; Takagi, S.; Mabuchi, H.; Ohshima M. Rapid production of ultralow dielectric constant porous polyimide films via CO2-tert-amine zwitterion-induced phase separation and subsequent photopolymerization. Macromolecules 2013, 46, 2275−2281.  doi: 10.1021/ma302406m

    23. [23]

      Chen, Y.; Wang, W.; Yu, W.; Yuan, Z.; Kang, E. T.; Neoh, K. G.; Krauter, B.; Greiner, A. Nanoporous low-k polyimide films via poly(amic acid)s with grafted poly(ethylene glycol) side chains from a reversible addition-fragmentation chain-transfer-mediated process. Adv. Funct. Mater. 2004, 14, 471−478.  doi: 10.1002/adfm.200305050

    24. [24]

      Kawagishi, K.; Saito, H.; Furukawa, H.; Horie, K. Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol. Rapid Commun. 2007, 28, 96−100.  doi: 10.1002/marc.200600587

    25. [25]

      Zhang, Y. H.; Lu, S. G.; Li, Y. Q.; Dang, Z. M.; Xin, J. H.; Fu, S. Y.; Li, G. T.; Guo, R. R.; Li, L. F. Novel silica tube/polyimide composite films with variable low dielectric constant. Adv. Mater. 2005, 17, 1056−1059.  doi: 10.1002/adma.200401330

    26. [26]

      Liao, W. H.; Yang, S. Y.; Hsiao, S. T.; Wang, Y. S.; Li, S. M.; Ma, C. C. M.; Tien, H. W.; Zeng, S. J. Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites. ACS Appl. Mater. Interfaces 2014, 6, 15802−15812.  doi: 10.1021/am504342j

    27. [27]

      Lew, C. M.; Li, Z. J.; Shuang, L.; Hwang, S. J.; Liu, Y.; Medina, I. D.; Sun, M. W.; Wang, J. L.; Davis, M. E.; Yan, Y. S. Pure-silica-zeolite MFI and MEL low-dielectric-constant films with fluoro-organic functionalization. Adv. Funct. Mater. 2008, 18, 3454−3460.  doi: 10.1002/adfm.200800390

    28. [28]

      Yuan, C.; Jin, K.; Li, K.; Diao, S.; Tong, J.; Fang, Q. Non-porous low-k dielectric films based on a new structural amorphous fluoropolymer. Adv. Mater. 2013, 25, 4875−4878.  doi: 10.1002/adma.201302021

    29. [29]

      Yang, J.; Liu, S.; Zhu, F.; Huang, Y.; Li, B.; Zhang, L. New polymers derived from 4-vinylsilylbenzocyclobutene monomer with good thermal stability, excellent film-forming property, and low-dielectric constant. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 381−391.  doi: 10.1002/pola.24437

    30. [30]

      Zhao, X. Y.; Liu, H. J. Review of polymer materials with low dielectric constant. Polym. Int. 2010, 59, 597−606.

    31. [31]

      Chern, Y. T.; Shiue, H. C. Low dielectric constants of soluble polyimides based on adamantane. Macromolecules 1997, 30, 4646−4651.  doi: 10.1021/ma970520n

    32. [32]

      Wang, J.; Zhou, J.; Jin, K.; Wang, L.; Sun, J.; Fang Q. A new fluorinated polysiloxane with good optical properties and low dielectric constant at high frequency based on easily available tetraethoxysilane (TEOS). Macromolecules 2017, 50, 9394−9402.  doi: 10.1021/acs.macromol.7b02000

    33. [33]

      Zhang, K.; Han, L.; Froimowicz, P.; Ishida, H. A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: Precursor for low temperature formation of very high performance polybenzoxazole with low dielectric constant and high thermal stability. Macromolecules 2017, 50, 6552−6560.  doi: 10.1021/acs.macromol.7b00887

    34. [34]

      Chern, Y. T.; Shiue, H. C. High subglass transition temperatures and low dielectric constants of polyimides derived from 4,9-bis(4-aminophenyl) diamantine. Chem. Mater. 1998, 10, 210−216.  doi: 10.1021/cm970341k

    35. [35]

      Johari, G. P.; Goldstein, M. Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys. 1970, 53, 2372−2388.  doi: 10.1063/1.1674335

    36. [36]

      Jho, J. Y.; Yee, A. F. Secondary relaxation motion in bisphenol a polycarbonate. Macromolecules 1991, 24, 1905−1913.  doi: 10.1021/ma00008a031

    37. [37]

      Wimberger-Friedl, R.; Schoo, H. F. M. On the secondary relaxation of substituted bis-A polycarbonates. Macromolecules 1996, 29, 8871−8874.  doi: 10.1021/ma960028o

    38. [38]

      Ngai, K. L.; Beiner, M. Secondary relaxation of the Johari-Goldstein kind in alkyl nanodomains. Macromolecules 2004, 3721, 8123−8127.

    39. [39]

      Coburn, J. C.; Soper, P. D.; Auman, B. C. Relaxation behavior of polyimides based on 2,2′-disubstituted benzidines. Macromolecules 1995, 28, 3253−3260.  doi: 10.1021/ma00113a030

  • 加载中
    1. [1]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    2. [2]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    3. [3]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    4. [4]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    5. [5]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    6. [6]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    7. [7]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    8. [8]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    9. [9]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    10. [10]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    11. [11]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    12. [12]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    13. [13]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    14. [14]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    15. [15]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    16. [16]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    17. [17]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    18. [18]

      Yunfen GaoLiying WangChufan ZhouYi ZhaoHai HuangJun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028

    19. [19]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    20. [20]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

Metrics
  • PDF Downloads(0)
  • Abstract views(897)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return