Citation: Ahmed Abed, Nabil Bouazizi, Stéphane Giraud, Ahmida El Achari, Christine Campagne, Olivier Thoumire, Reddad El Moznine, Omar Cherkaoui, Julien Vieillard, Abdelkrim Azzouz. Polyester-supported Chitosan-Poly(vinylidene fluoride)-Inorganic-Oxide-Nanoparticles Composites with Improved Flame Retardancy and Thermal Stability[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 84-91. doi: 10.1007/s10118-020-2336-7 shu

Polyester-supported Chitosan-Poly(vinylidene fluoride)-Inorganic-Oxide-Nanoparticles Composites with Improved Flame Retardancy and Thermal Stability

  • Corresponding author: Nabil Bouazizi, bouazizi.nabil@hotmail.fr
  • Received Date: 10 May 2019
    Revised Date: 15 July 2019
    Available Online: 8 November 2019

  • Polyester (PET) was pre-activated by atmospheric air plasma and coated by various inorganic oxide nanoparticles (MOx) such as titanium dioxide (TiO2), zinc oxide (ZnO), and silicon oxide (SiO2), using poly(vinylidene fluoride) (PVDF) and chitosan (CT) as binders. The resulting PET-PVDF-MOx-CT composites were thermally compressed and then characterized by scanning electron microscopy, Fourier infrared spectroscopy, thermal gravimetric analysis, and flame retardancy (FR) ability tests. PET modifications resulted in more thermally stable and less harmful composites with weaker hazardous gas release. This was explained in terms of structure compaction that blocks pyrolysis gas emissions. CT incorporation was found to reduce the material susceptibility to oxidation. This judicious procedure also allowed improving flame retardancy ability, by lengthening the combustion delay and slowing the flame propagation. Chitosan also turned out to contribute to a possible synergy with the other polymers present in the synthesized materials. These results provide valuable data that allow understanding the FR phenomena and envisaging low-cost high FR materials from biodegradable raw materials.
  • 加载中
    1. [1]

      Overholt, K. J.; Gollner, M. J.; Perricone, J.; Rangwala, A. S.; Williams, F. A. Warehouse commodity classification from fundamental principles. Part II: flame heights and flame spread. Fire Safety J. 2011, 46, 317−329.

    2. [2]

      Lee, S. J.; Kim, S. H.; Won, J. P. Strength and fire resistance of a high-strength nano-polymer modified cementitious composite. Compos. Struct. 2017, 173, 96−105.  doi: 10.1016/j.compstruct.2017.04.012

    3. [3]

      Abidi, N.; Cabrales, L.; Hequet, E. Functionalization of a cotton fabric surface with titania nanosols: applications for self-cleaning and UV-protection properties. ACS Appl. Mater. Interfaces 2009, 1, 2141−2146.  doi: 10.1021/am900315t

    4. [4]

      Emam, H. E.; Abdelhameed, R. M. Anti-UV radiation textiles designed by embracing with nano-MIL (Ti, In)–metal organic framework. ACS Appl. Mater. Interfaces 2017, 9, 28034−28045.  doi: 10.1021/acsami.7b07357

    5. [5]

      Costa, F. R.; Saphiannikova, M.; Wagenknecht, U.; Heinrich, G. Layered double hydroxide based polymer nanocomposites. In Wax crystal control: nanocomposites, stimuli-responsive polymers. Springer, 2007, pp. 101−168.

    6. [6]

      Han, Y.; Wu, Y.; Shen, M.; Huang, X.; Zhu, J.; Zhang, X. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J. Mater. Sci. 2013, 48, 4214−4222.  doi: 10.1007/s10853-013-7234-8

    7. [7]

      Costa, F. R.; Wagenknecht, U.; Heinrich, G. LDPE/Mg-Al layered double hydroxide nanocomposite: thermal and flammability properties. Polym. Degrad. Stab. 2007, 92, 1813−1823.  doi: 10.1016/j.polymdegradstab.2007.07.009

    8. [8]

      Plentz, R. S.; Miotto, M.; Schneider, E. E.; Forte, M. M. C.; Mauler, R. S.; Nachtigall, S. M. B. Effect of a macromolecular coupling agent on the properties of aluminum hydroxide/PP composites. J. Appl. Polym. Sci. 2006, 101, 1799−1805.  doi: 10.1002/app.23558

    9. [9]

      Xie, Y.; Hill, C. A. S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: a review. Compos. Part A: Appl. Sci. Manuf. 2010, 41, 806−819.  doi: 10.1016/j.compositesa.2010.03.005

    10. [10]

      Bouazizi, N.; Ajala, F.; Bettaibi, A.; Khelil, M.; Benghnia, A.; Bargougui, R.; Louhichi, S.; Labiadh, L.; Slama, R. B.; Chaouachi, B. Metal-organo-zinc oxide materials: investigation on the structural, optical and electrical properties. J. Alloys Compd. 2016, 656, 146−153.  doi: 10.1016/j.jallcom.2015.09.188

    11. [11]

      Bouazizi, N.; Khelil, M.; Ajala, F.; Boudharaa, T.; Benghnia, A.; Lachheb, H.; Slama, R. B.; Chaouachi, B.; M'Nif, A.; Azzouz, A. Molybdenum-loaded 1,5-diaminonaphthalene/ZnO materials with improved electrical properties and affinity towards hydrogen at ambient conditions. Int. J. Hydro. Energy 2016, 41, 11232−11241.  doi: 10.1016/j.ijhydene.2016.04.196

    12. [12]

      Deb, H.; Morshed, M. N.; Xiao, S.; Al Azad, S.; Cai, Z.; Ahmed, A. Design and development of TiO2-Fe0 nanoparticle-immobilized nanofibrous mat for photocatalytic degradation of hazardous water pollutants. J. Mater. Sci. Mater. Electron. 2019, 30, 4842−4854.  doi: 10.1007/s10854-019-00779-2

    13. [13]

      Deb, H.; Xiao, S.; Morshed, M. N.; Al Azad, S. Immobilization of cationic titanium dioxide (TiO2+) on electrospun nanofibrous mat: Synthesis, characterization, and potential environmental application. Fibers Polym. 2018, 19, 1715−1725.  doi: 10.1007/s12221-018-8158-3

    14. [14]

      Hou, X.; Ren, P.; Rong, Q.; Zheng, W.; Zhan, Y. Effect of fire insulation on fire resistance of hybrid-fiber reinforced reactive powder concrete beams. Compos. Struct. 2019, 209, 219−232.  doi: 10.1016/j.compstruct.2018.10.073

    15. [15]

      Wei, Y. X.; Deng, C.; Zhao, Z. Y.; Wang, Y. Z. A novel organic-inorganic hybrid SiO2@DPP for the fire retardance of polycarbonate. Polym. Degrad. Stab. 2018, 154, 177−185.  doi: 10.1016/j.polymdegradstab.2018.05.014

    16. [16]

      Wang, D.; Song, L.; Zhou, K.; Yu, X.; Hu, Y.; Wang, J. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A 2015, 3, 14307−14317.  doi: 10.1039/C5TA01720C

    17. [17]

      Morshed, M. N.; Shen, X.; Deb, H.; Azad, S. A.; Zhang, X.; Li, R. Sonochemical fabrication of nanocryatalline titanium dioxide (TiO2) in cotton fiber for durable ultraviolet resistance. J. Nat. Fibers 2018, 1−14.

    18. [18]

      Jiang, S. D.; Bai, Z. M.; Tang, G.; Song, L.; Stec, A. A.; Hull, T. R.; Hu, Y.; Hu, W. Z. Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: Layer-by-layer method and their effects on the flame retardancy of epoxy resins. ACS Appl. Mater. Interfaces 2014, 6, 14076−14086.  doi: 10.1021/am503412y

    19. [19]

      Papageorgiou, D. G.; Terzopoulou, Z.; Fina, A.; Cuttica, F.; Papageorgiou, G. Z.; Bikiaris, D. N.; Chrissafis, K.; Young, R. J.; Kinloch, I. A. Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler. Compos. Sci. Technol. 2018, 156, 95−102.  doi: 10.1016/j.compscitech.2017.12.019

    20. [20]

      Yao, K.; Gong, J.; Zheng, J.; Wang, L.; Tan, H.; Zhang, G.; Lin, Y.; Na, H.; Chen, X.; Wen, X. Catalytic carbonization of chlorinated poly(vinyl chloride) microfibers into carbon microfibers with high performance in the photodegradation of Congo Red. J. Phys. Chem. C 2013, 117, 17016−17023.  doi: 10.1021/jp4042556

    21. [21]

      Ferrreira, A.; Rocha, J. G.; Ansón-Casaos, A.; Martínez, M. T.; Vaz, F.; Lanceros-Mendez, S. Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sensors Actuators A 2012, 178, 10−16.  doi: 10.1016/j.sna.2012.01.041

    22. [22]

      Parangusan, H.; Ponnamma, D.; AlMaadeed, M. A. A. Flexible tri-layer piezoelectric nanogenerator based on PVDF-HFP/Ni-doped ZnO nanocomposites. RSC Adv. 2017, 7, 50156−50165.  doi: 10.1039/C7RA10223B

    23. [23]

      Guan, X.; Zhang, Y.; Li, H.; Ou, J. PZT/PVDF composites doped with carbon nanotubes. Sensors Actuators A 2013, 194, 228−231.  doi: 10.1016/j.sna.2013.02.005

    24. [24]

      Huang, P.; Cao, M.; Liu, Q. Adsorption of chitosan on chalcopyrite and galena from aqueous suspensions. Colloid. Surf. A 2012, 409, 167−175.  doi: 10.1016/j.colsurfa.2012.06.016

    25. [25]

      Liu, Y.; Wang, Q. Q.; Jiang, Z. M.; Zhang, C. J.; Li, Z. F.; Chen, H. Q.; Zhu, P. Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J. Analyt. Appl. Pyrolysis 2018, 135, 289−298.  doi: 10.1016/j.jaap.2018.08.024

    26. [26]

      Li, J.; Gong, Y.; Zhao, N.; Zhang, X. Preparation of N-butyl chitosan and study of its physical and biological properties. J. Appl. Polym. Sci. 2005, 98, 1016−1024.  doi: 10.1002/app.22212

    27. [27]

      Arshad, N.; Zia, K. M.; Jabeen, F.; Anjum, M. N.; Akram, N.; Zuber, M. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. Int. J. Bio. Macromol. 2018, 111, 485−492.  doi: 10.1016/j.ijbiomac.2018.01.032

    28. [28]

      Morshed, M. N.; Bouazizi, N.; Behary, N.; Vieillard, J.; Thoumire, O.; Azzouz, A. Iron-loaded amine/thiol functionalized polyester fibers with high catalytic activities: Comparative study. Dalton Trans. 2019.

    29. [29]

      Nabil, B.; Morshed, M. N.; Nemeshwaree, B.; Christine, C.; Julien, V.; Olivier, T.; Abdelkrim, A. Development of new multifunctional filter based nonwovens for organics pollutants reduction and detoxification: high catalytic and antibacterial activities. Chem. Eng. J. 2019, 356, 702−716.  doi: 10.1016/j.cej.2018.08.166

    30. [30]

      Yasin, S.; Behary, N.; Giraud, S.; Perwuelz, A. In situ degradation of organophosphorus flame retardant on cellulosic fabric using advanced oxidation process: a study on degradation and characterization. Polym. Degrad. Stab. 2016, 126, 1−8.  doi: 10.1016/j.polymdegradstab.2015.12.005

    31. [31]

      Ramesan, M. T.; Siji, C.; Kalaprasad, G.; Bahuleyan, B. K.; Al-Maghrabi, M. A. Effect of silver doped zinc oxide as nanofiller for the development of biopolymer nanocomposites from chitin and cashew gum. J. Polym. Environ. 2018, 26, 2983−2991.  doi: 10.1007/s10924-018-1187-6

    32. [32]

      Bachan, N.; Asha, A.; Jeyarani, W. J.; Kumar, D. A.; Shyla, J. M. A comparative investigation on the structural, optical and electrical properties of SiO2-Fe3O4 core-shell nanostructures with their single components. Acta Metallurgica Sinica (English Letters) 2015, 28, 1317−1325.  doi: 10.1007/s40195-015-0328-3

    33. [33]

      Ali, F.; Khan, S. B.; Kamal, T.; Alamry, K. A.; Bakhsh, E. M.; Asiri, A. M.; Sobahi, T. R. A. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr. Polym. 2018, 192, 217−230.  doi: 10.1016/j.carbpol.2018.03.029

    34. [34]

      Ganesan, S.; Muthuraaman, B.; Mathew, V.; Vadivel, M. K.; Maruthamuthu, P.; Ashokkumar, M.; Suthanthiraraj, S. A. Influence of 2,6(N-pyrazolyl) isonicotinic acid on the photovoltaic properties of a dye-sensitized solar cell fabricated using poly(vinylidene fluoride) blended with poly(ethylene oxide) polymer electrolyte. Electrochim. Acta 2011, 56, 8811−8817.  doi: 10.1016/j.electacta.2011.07.081

    35. [35]

      Tripathi, A. K.; Singh, M. K.; Mathpal, M. C.; Mishra, S. K.; Agarwal, A. Study of structural transformation in TiO2 nanoparticles and its optical properties. J. Alloys Compd. 2013, 549, 114−120.  doi: 10.1016/j.jallcom.2012.09.012

    36. [36]

      Zhou, Q.; Lei, X. P.; Li, J. H.; Yan, B. F.; Zhang, Q. Q. Antifouling, adsorption and reversible flux properties of zwitterionic grafted PVDF membrane prepared via physisorbed free radical polymerization. Desalination 2014, 337, 6−15.  doi: 10.1016/j.desal.2014.01.006

    37. [37]

      Coates, J. Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry: Applications, theory and instrumentation 2006.

    38. [38]

      Zhang, L. Y.; Zhu, X. J.; Sun, H. W.; Chi, G. R.; Xu, J. X.; Sun, Y. L. Control synthesis of magnetic Fe3O4-chitosan nanoparticles under UV irradiation in aqueous system. Curr. Appl. Phys. 2010, 10, 828−833.  doi: 10.1016/j.cap.2009.10.002

    39. [39]

      Ma, W.; Ya, F. Q.; Han, M.; Wang, R. Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. J. Hazard. Mater. 2007, 143, 296−302.  doi: 10.1016/j.jhazmat.2006.09.032

    40. [40]

      Han, Z.; Dong, L.; Li, Y.; Zhao, H. A comparative study on the synergistic effect of expandable graphite with APP and IFR in polyethylene. J. Fire Sci. 2007, 25, 79−91.  doi: 10.1177/0734904107066308

    41. [41]

      Dhineshbabu, N. R.; Arunmetha, S.; Manivasakan, P.; Karunakaran, G.; Rajendran, V. Enhanced functional properties of cotton fabrics using TiO2/SiO2 nanocomposites. J. Indus. Textiles 2016, 45, 674−692.  doi: 10.1177/1528083714538684

    42. [42]

      Emam, H. E.; Manian, A. P.; Široká, B.; Duelli, H.; Merschak, P.; Redl, B.; Bechtold, T. Copper(I) oxide surface modified cellulose fibers—synthesis, characterization and antimicrobial properties. Surf. Coatings Technol. 2014, 254, 344−351.  doi: 10.1016/j.surfcoat.2014.06.036

  • 加载中
    1. [1]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    2. [2]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    3. [3]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    4. [4]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    5. [5]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    6. [6]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    7. [7]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    8. [8]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    9. [9]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    10. [10]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    11. [11]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    12. [12]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    13. [13]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    14. [14]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    15. [15]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    16. [16]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    17. [17]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    18. [18]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    19. [19]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    20. [20]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

Metrics
  • PDF Downloads(0)
  • Abstract views(728)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return