Structural Design and Application of Azo-based Supramolecular Polymer Systems
- Corresponding author: Wei Feng, weifeng@tju.edu.cn
Citation:
Hui-Tao Yu, Jun-Wen Tang, Yi-Yu Feng, Wei Feng. Structural Design and Application of Azo-based Supramolecular Polymer Systems[J]. Chinese Journal of Polymer Science,
;2019, 37(12): 1183-1199.
doi:
10.1007/s10118-019-2331-z
Lehn, J. M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. 1988, 27, 89-112.
doi: 10.1002/(ISSN)1521-3773
Yagai, S.; Karatsu, T.; Kitamura, A. Photocontrollable self-assembly. Chem. Eur. J. 2005, 11, 4054-4063.
doi: 10.1002/(ISSN)1521-3765
Cheng, M. J.; Zhang, Q.; Shi, F. Macroscopic supramolecular assembly and its applications. Chinese J. Polym. Sci. 2018, 36, 306-321.
doi: 10.1007/s10118-018-2069-z
Cao, C.; Li, Y.; Feng Y. Y.; Long, P.; An, H. R.; Qin, C. Q.; Han, J. K.; Li S. W.; Feng, W. A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 22519-22526.
doi: 10.1039/C7TA05787C
Archut, A.; Vögtle, F.; De Cola, L.; Azzellini, G. C.; Balzani, V.; Ramanujam, P. S.; Berg, R. H. Azobenzene functionalized cascade molecules: Photoswitchable supramolecular systems. Chem. Eur. J. 1998, 4, 699-706.
doi: 10.1002/(ISSN)1521-3765
Fabbrizzi. L.; Poggi, A. Sensors and switches from supramolecular chemistry. Chem. Soc. Rev. 1995, 24, 197-202.
doi: 10.1039/cs9952400197
Lehn, J. M. Supramolecular chemistry: Receptors, catalysts, and carriers. Science 1985, 227, 849-856.
doi: 10.1126/science.227.4689.849
Chu, Z.; Han, Y.; Bian, T.; De, S.; Král, P.; Klajn, R. Supramolecular control of azobenzene switching on nanoparticles. J. Am. Chem. Soc. 2018, 141, 1949-1960.
doi: 10.1021/jacs.8b09638
Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev. 2014, 115, 7794-7839.
doi: 10.1021/cr500392w
Mattia, E.; Otto, S. Supramolecular systems chemistry. Nat. Nanotech. 2015, 10, 111.
doi: 10.1038/nnano.2014.337
Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Halogen bonding in supramolecular chemistry. Chem. Rev. 2015, 115, 7118-7195.
doi: 10.1021/cr500674c
Lehn, J. M. Supramolecular chemistry: Where from? Where to? Chem. Soc. Rev. 2017, 46, 2378-2379.
doi: 10.1039/C7CS00115K
Delbianco, M.; Bharate, P.; Varela-Aramburu, S.; Seeberger, P. H. Carbohydrates in supramolecular chemistry. Chem. Rev. 2015, 116, 1693-1752.
doi: 10.1021/acs.chemrev.5b00516
Zeng, F.; Zimmerman, S. C. Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly. Chem. Rev. 1997, 97, 1681-1712.
doi: 10.1021/cr9603892
Huang, F.; Scherman, O. A. Supramolecular polymers. Chem. Soc. Rev. 2012, 41, 5879-5880.
doi: 10.1039/c2cs90071h
Stupp, S. I.; Keser, M.; Tew, G. N. Functionalized supramolecular materials. Polymer. 1998, 39, 4505-4508.
doi: 10.1016/S0032-3861(98)00047-0
Bernhardt, P. V. A supramolecular synthon for H-bonded transition metal arrays. Inorg. Chem. 1999, 38, 3481-3483.
doi: 10.1021/ic990074f
Liu, Z. F.; Hashimoto, K.; Fujishima, A. Photoelectrochemical information storage using an azobenzene derivative. Nature 1990, 347, 658.
doi: 10.1038/347658a0
Freundlich, H.; Heller, W. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc. 1939, 61, 2228-2230.
doi: 10.1021/ja01877a071
Kumar, S.; Dinesha, P.; Rosen, M. A. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy, 2019, 185, 1163-1173.
doi: 10.1016/j.energy.2019.07.124
Hartley, G. S. The cis-form of azobenzene. Nature 1937, 140, 281.
doi: 10.1038/140281a0
Gauglitz, G.; Hubig, S. Chemical actinometry in the UV by azobenzene in concentrated solution: a convenient method. J. Photochemistry, 1985, 30, 121-125.
doi: 10.1016/0047-2670(85)85018-8
Balzani, V.; Credi, A., Raymo, F. M.; Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 2000, 39, 3348-3391.
doi: 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X
Ueno, A.; Yoshimura, H.; Saka, R.; Osa, T. Photocontrol of binding ability of capped cyclodextrin. J. Am. Chem. Soc. 1979, 101, 2779-2780.
doi: 10.1021/ja00504a070
Emoto, A.; Uchida, E.; Fukuda, T. Optical and physical applications of photocontrollable materials: Azobenzene-containing and liquid crystalline polymers. Polymers 2012, 4, 150-186.
doi: 10.3390/polym4010150
Tejedor, R. M.; Oriol, L.; Serrano, J. L.; Partal Ureña, F.; López González, J. J. Photoinduced chiral nematic organization in an achiral glassy nematic azopolymer. Adv. Funct. Mater. 2007, 17, 3486-3492.
doi: 10.1002/adfm.v17:17
Priewisch, B.; Rück-Braun, K. Efficient preparation of nitrosoarenes for the synthesis of azobenzenes. J. org. Chem. 2005, 70, 2350-2352.
doi: 10.1021/jo048544x
Feng, W.; Luo, W.; Feng, Y. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: Structures, properties and application. Nanoscale 2012, 4, 6118-6134.
doi: 10.1039/c2nr31505j
Beharry, A. A.; Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011, 40, 4422-4437.
doi: 10.1039/c1cs15023e
Goulet-Hanssens, A.; Barrett, C. J. Photo-control of biological systems with azobenzene polymers. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3058-3070.
doi: 10.1002/pola.26735
Dong, R.; Liu, Y.; Zhou, Y.; Yan, D.; Zhu, X. Photo-reversible supramolecular hyperbranched polymer based on host-guest interactions. Polym. Chem. 2011, 2, 2771-2774.
doi: 10.1039/c1py00426c
Qin, M.; Xu, Y.; Cao, R.; Feng, W.; Chen, L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 2018, 28, 1805053.
doi: 10.1002/adfm.v28.45
Poutanen, M.; Ikkala, O.; Priimagi, A. Structurally controlled dynamics in azobenzene-based supramolecular self-assemblies in solid state. Macromolecules 2016, 49, 4095-4101.
doi: 10.1021/acs.macromol.6b00562
Vapaavuori, J.; Ras, R. H.; Kaivola, M.; Bazuin, C. G.; Priimagi, A. From partial to complete optical erasure of azobenzene-polymer gratings: Effect of molecular weight. J. Mater. Chem. C 2015, 3, 11011-11016.
doi: 10.1039/C5TC01776A
Wie, J. J.; Wang, D. H.; Lee, K. M.; White, T. J.; Tan, L. S. The contribution of hydrogen bonding to the photomechanical response of azobenzene-functionalized polyamides. J. Mater. Chem. C 2018, 6, 5964-5974.
doi: 10.1039/C8TC00319J
Oscurato, S. L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics 2018, 7, 1387-1422.
doi: 10.1515/nanoph-2018-0040
Yagai, S.; Nakajima, T.; Karatsu, T.; Saitow, K. I.; Kitamura, A. Phototriggered self-assembly of hydrogen-bonded rosette. J. Am. Chem. Soc. 2004, 126, 11500-11508.
doi: 10.1021/ja047783z
Zhan, T. G.; Lin, M. D.; Wei, J.; Liu, L. J.; Yun, M. Y.; Wu, L; Zheng, S. T.; Yin, H. H.; Li, C. K.; Zhang, K. D. Visible-light responsive hydrogen-bonded supramolecular polymers based on ortho-tetrafluorinated azobenzene. Polym. Chem. 2017, 8, 7384-7389.
doi: 10.1039/C7PY01612C
Groombridge, A. S.; Palma, A.; Parker, R. M.; Abell, C.; Scherman, O. A. Aqueous interfacial gels assembled from small molecule supramolecular polymers. Chem. Sci. 2017, 8, 1350-1355.
doi: 10.1039/C6SC04103E
Du, M.; Li, L.; Zhang, J.; Li, K.; Cao, M.; Mo, L.; Hua, G.; Chen, Y.; Yu, H.; Yang, H. Photoresponsive iodine-bonded liquid crystals based on azopyridine derivatives with a low phase-transition temperature. Liquid Crystals 2019, 46, 37-44.
doi: 10.1080/02678292.2018.1468040
Chen, Y.; Yu, H.; Zhang, L.; Yang, H.; Lu, Y. Photoresponsive liquid crystals based on halogen bonding of azopyridines. Chem. Comm. 2014, 50, 9647-9649.
doi: 10.1039/C4CC02344G
Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem. Soc. Rev. 2015, 44, 815-832.
doi: 10.1039/C4CS00327F
Zhou, W.; Kobayashi, T.; Zhu, H.; Yu, H. Electrically conductive hybrid nanofibers constructed with two amphiphilic salt components. Chem. Comm. 2011, 47, 12768-12770.
doi: 10.1039/c1cc14145g
Gao, J.; He, Y.; Xu, H.; Song, B.; Zhang, X.; Wang, Z.; Wang, X. Azobenzene-containing supramolecular polymer films for laser-induced surface relief gratings. Chem. Mater. 2007, 19, 14-17.
doi: 10.1021/cm061902n
Cui, L.; Zhao, Y. Azopyridine side chain polymers: an efficient way to prepare photoactive liquid crystalline materials through self-assembly. Chem. Mater. 2004, 16, 2076-2082.
doi: 10.1021/cm0348850
Shibaev, P. V.; Schaumburg, K.; Plaksin, V. Responsive chiral hydrogen-bonded polymer composites. Chem. Mater. 2002, 14, 959-961.
doi: 10.1021/cm011510a
Zettsu, N.; Ogasawara, T.; Mizoshita, N.; Nagano, S.; Seki, T. Photo-triggered surface relief grating formation in supramolecular liquid crystalline polymer systems with detachable azobenzene unit. Adv. Mater. 2008, 20, 516-521.
doi: 10.1002/(ISSN)1521-4095
Li, S.; Feng, Y.; Long, P.; Qin, C.; Feng, W. The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes. J. Mater. Chem. C 2017, 5, 5068-5075.
doi: 10.1039/C7TC00142H
Hu, Y.; Wu, K. Y.; Zhu, T.; Shen, P.; Zhou, Y.; Li, X.; Wang, C. L.; Tu, Y.; Li, C. Y. Unique supramolecular liquid-crystal phases with different two-dimensional crystal layers. Angew. Chem. 2018, 130, 13642-13646.
doi: 10.1002/ange.201805717
Huang, C. W.; Ji, W. Y.; Kuo, S. W. Stimuli-responsive supramolecular conjugated polymer with phototunable surface relief grating. Polym. Chem. 2018, 9, 2813-2820.
doi: 10.1039/c8py00439k
Mosciatti, T.; Bonacchi, S.; Gobbi, M.; Ferlauto, L.; Liscio, F.; Giorgini, L.; Orgiu, E.; Samorì, P. Optical input/electrical output memory elements based on a liquid crystalline azobenzene polymer. ACS Appl. Mater. Interface 2016, 8, 6563-6569.
doi: 10.1021/acsami.5b12430
Jansze, S. M.; Cecot, G.; Severin, K. Reversible disassembly of metallasupramolecular structures mediated by a metastable-state photoacid. Chem. Sci. 2018, 9, 4253-4257
doi: 10.1039/c8sc01108g
Park, J.; Feng, D.; Yuan, S.; Zhou, H. C. Photochromic metal-organic frameworks: reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. 2015, 54, 430-435.
doi: 10.1002/anie.201408862
Vapaavuori, J.; Bazuin, C. G.; Priimagi, A. Supramolecular design principles for efficient photoresponsive polymer-azobenzene complexes. J. Mater. Chem. C 2018, 6, 2168-2188.
doi: 10.1039/C7TC05005D
Wang, L.; Yin, L.; Zhang, W.; Zhu, X.; Fujiki, M. Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium. J. Am. Chem. Soc. 2017, 139, 13218-13226.
doi: 10.1021/jacs.7b07626
Cui, Y.; Gong, H.; Wang, Y.; Li, D.; Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater. 2018, 30, 1706807.
doi: 10.1002/adma.v30.14
Li, Z. Y.; Chen, Y.; Wu, H.; Liu, Y. Photoinduced assembly/disassembly of supramolecular nanoparticle based on polycationic cyclodextrin and azobenzene-containing surfactant. ChemistrySelect 2018, 3, 3203-3207.
doi: 10.1002/slct.201703091
Yu, H.; Liu, H.; Kobayashi, T. Fabrication and photoresponse of supramolecular liquid-crystalline microparticles. ACS appl. Mater. Interface 2011, 3, 1333-1340.
doi: 10.1021/am2001289
Sun, Z.; Huang, Q.; He, T.; Li, Z.; Zhang, Y.; Yi, L. Multistimuli-responsive supramolecular gels: Design rationale, recent advances, and perspectives. Chem. Phys. Chem. 2014, 15, 2421-2430.
doi: 10.1002/cphc.201402187
Zhang, X.; Ma, X.; Wang, K.; Lin, S.; Zhu, S.; Dai, Y.; Xia, F. Recent advances in cyclodextrin-based light-responsive supramolecular systems. Macromol. Rapid Comm. 2018, 39, 1800142.
doi: 10.1002/marc.v39.11
Fox, J. D.; Rowan, S. J. Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules 2009, 42, 6823-6835.
doi: 10.1021/ma901144t
Schoelch, S.; Vapaavuori, J.; Rollet, F. G.; Barrett, C. J. The orange side of disperse red 1: Humidity-driven color switching in supramolecular azo-polymer materials based on reversible dye aggregation. Macromol. Rap. Comm. 2017, 38, 1600582.
doi: 10.1002/marc.v38.1
Li, Z. Y.; Zhang, Y.; Zhang, C. W.; Chen, L. J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H. B. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5] arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 2014, 136, 8577-8589.
doi: 10.1021/ja413047r
Baroncini, M.; Bergamini, G. Azobenzene: A photoactive building block for supramolecular architectures. Chem. Rec. 2017, 17, 700-712.
doi: 10.1002/tcr.v17.7
Stoffelen, C.; Voskuhl, J.; Jonkheijm, P.; Huskens, J. Dual stimuli-responsive self-assembled supramolecular nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 3400-3404.
doi: 10.1002/anie.201310829
Hou, P. P.; Zhang, Z. Y.; Wang, Q.; Zhang, M. Y.; Shen, Z.; Fan, X. H. Hierarchical structures in a main-chain/side-chain combined liquid crystalline polymer with a polynorbornene backbone and multi-benzene side-chain mesogens. Macromolecules 2016, 49, 7238-7245.
doi: 10.1021/acs.macromol.6b01524
Chen, H.; Ma, X.; Wu, S.; Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int. Ed. 2014, 53, 14149-14152.
doi: 10.1002/anie.v53.51
Shen, P.; Qiu, L. Dual-responsive recurrent self-assembly of a supramolecular polymer based on the host-guest complexation interaction between β-cyclodextrin and azobenzene. New J. Chem. 2018, 42, 3593-3601.
doi: 10.1039/C7NJ05042A
Kuad, P.; Miyawaki, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer. J. Am. Chem. Soc. 2007, 129, 12630-12631.
doi: 10.1021/ja075139p
Zhang, X.; Feng, Y.; Huang, D.; Li, Y.; Feng, W. Investigation of optical modulated conductance effects based on a graphene oxide-azobenzene hybrid. Carbon 2010, 48, 3236-3241.
doi: 10.1016/j.carbon.2010.05.009
Bortolus, P.; Monti, S. Cis. dblharw. trans photoisomerization of azobenzene-cyclodextrin inclusion complexes. J. Phys. Chem. 1987, 91, 5046-5050.
doi: 10.1021/j100303a032
Wang, Y.; Ma, N.; Wang, Z.; Zhang, X. Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with α-cyclodextrin. Angew. Chem. Int. Ed. 2014, 46, 2823-2826.
doi: 10.1002/anie.200604982
Zhang, X.; Feng, Y.; Lv, P.; Shen, Y.; Feng, W. Enhanced reversible photoswitching of azobenzene unctionalized graphene oxide hybrids. Langmuir 2010, 26, 18508-18511.
doi: 10.1021/la1037537
Leenders, C. M.; Albertazzi, L.; Mes, T.; Koenigs, M. M.; Palmans, A. R.; Meijer, E. W. Supramolecular polymerization in water harnessing both hydrophobic effects and hydrogen bond formation. Chem. Commun. 2013, 49, 1963-1965.
doi: 10.1039/c3cc38949a
Nie, J.; Liu, X.; Yan, Y.; Zhang, H. Supramolecular hydrogen-bonded photodriven actuators based on an azobenzene-containing main-chain liquid crystalline poly(ester-amide). J. Mater. Chem. C 2017, 5, 10391-10398.
doi: 10.1039/C7TC02943H
Toh, C. L.; Xu, J.; Lu, X.; He, C. Synthesis and characterisation of main-chain hydrogen-bonded supramolecular liquid crystalline complexes formed by azo-containing compounds. Liquid Crystals 2008, 35, 241-251.
doi: 10.1080/02678290701862355
Rogness, D. C.; Riedel, P. J.; Sommer, J. R.; Reed, D. F.; Wiegel, K. N. Supramolecular main chain liquid crystalline polymers utilizing azopyridine derivatives. Liquid crystals 2006, 33, 567-572.
doi: 10.1080/02678290600604973
Sun, R.; Xue, C.; Ma, X.; Gao, M.; Tian, H.; Li, Q. Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p-sulfonatocalix[4] arene) and pseudorotaxane. J. Am. Chem. Soc. 2013, 135, 5990-5993.
doi: 10.1021/ja4016952
Haque, H. A.; Hara, M.; Nagano, S.; Seki, T. Photoinduced in-plane motions of azobenzene mesogens affected by the flexibility of underlying amorphous chains. Macromolecules 2013, 46, 8275-8283.
doi: 10.1021/ma401536r
Dai, Y.; Zhang, X. Dual stimuli-responsive supramolecular polymeric nanoparticles based on poly (α-cyclodextrin) and acetal-modified β-cyclodextrin-azobenzene. J. Polym. Res. 2018, 25, 102.
doi: 10.1007/s10965-018-1503-9
Haque, H. A.; Kakehi, S.; Hara, M.; Nagano, S.; Seki, T. High-density liquid-crystalline azobenzene polymer brush attained by surface-initiated ring-opening metathesis polymerization. Langmuir 2013, 29, 7571-7575.
doi: 10.1021/la4002847
Maity, C.; Hendriksen, W. E.; van Esch, J. H.; Eelkema, R. Spatial structuring of a supramolecular hydrogel by using a visible-light triggered catalyst. Angew. Chem. Int. Ed. 2015, 54, 998-1001.
doi: 10.1002/anie.201409198
Lee, S.; Oh, S.; Lee, J.; Malpani, Y.; Jung, Y. S.; Kang, B.; Lee, J. Y.; Ozasa, K.; Isoshima, T.; Lee, S. Y.; Hara, M.; Hashizume, D.; Hara, M. Stimulus-responsive azobenzene supramolecules: Fibers, gels, and hollow spheres. Langmuir 2013, 29, 5869-5877.
doi: 10.1021/la400159m
Kim, D. Y.; Shin, S.; Yoon, W. J.; Choi, Y. J.; Hwang, J. K.; Kim, J. S.; Lee C. R.; Choi, T. L.; Jeong, K. U. From smart denpols to remote-controllable actuators: Hierarchical superstructures of azobenzene-based polynorbornenes. Adv. Funct. Mater. 2017, 27, 1606294.
doi: 10.1002/adfm.201606294
Fréchet, J. M. Dendrimers and supramolecular chemistry. Proc. Natl. Acad. Sci. 2002, 99, 4782-4787.
doi: 10.1073/pnas.082013899
Qin, C.; Feng, Y.; Luo, W.; Cao, C.; Hu, W.; Feng, W. A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J. Mater. Chem. A 2015, 3, 16453-16460.
doi: 10.1039/C5TA01543J
Li, W.; Zhang, A.; Feldman, K.; Walde, P.; Schlüter, A. D. Thermoresponsive dendronized polymers. Macromolecules 2008, 41, 3659-3667.
doi: 10.1021/ma800129w
Roeser, J.; Moingeon, F.; Heinrich, B.; Masson, P.; Arnaud-Neu, F.; Rawiso, M.; Méry, S. Dendronized polymers with peripheral oligo(ethylene oxide) chains: Thermoresponsive behavior and shape anisotropy in solution. Macromolecules 2011, 44, 8925-8935.
doi: 10.1021/ma2016776
Liu, L.; Li, W.; Liu, K.; Yan, J.; Hu, G.; Zhang, A. Comblike thermoresponsive polymers with sharp transitions: Synthesis, characterization, and their use as sensitive colorimetric sensors. Macromolecules 2011, 44, 8614-8621.
doi: 10.1021/ma201874c
Chivers, P. R.; Smith, D. K. Shaping and structuring supramolecular gels. Nature Rev. Mater. 2019, 1, 463-478.
Yagai, S.; Kitamura, A. Recent advances in photoresponsive supramolecular self-assemblies. Chem. Soc. Rev. 2008, 37, 1520-1529.
doi: 10.1039/b703092b
Stoychev, G.; Kirillova, A.; Ionov, L. Light-responsive shape-changing polymers. Adv. Opt. Mater. 2019, 1900067.
doi: 10.1002/adom.201900067
Kato, T.; Hirota, N.; Fujishima, A.; Fréchet, J. M. Supramolecular hydrogen-bonded liquid-crystalline polymer complexes. Design of side-chain polymers and a host-guest system by noncovalent interaction. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 57-62.
doi: 10.1002/(SICI)1099-0518(19960115)34:1<57::AID-POLA5>3.0.CO;2-0
Wiedbrauk, S.; Dube, H. Hemithioindigo-An emerging photoswitch. Tetrahedron Lett. 2015, 56, 4266-4274.
doi: 10.1016/j.tetlet.2015.05.022
Yao, X.; Li, T.; Wang, J.; Ma, X.; Tian, H. Recent progress in photoswitchable supramolecular self-assembling systems. Adv. Optical Mater. 2016, 4, 1322-1349.
doi: 10.1002/adom.201600281
Wang, H.; Zhu, C. N.; Zeng, H.; Ji, X.; Xie, T.; Yan, X.; Wu, Z.; Huang, F. Reversible ion-conducting switch in a novel single-ion supramolecular hydrogel enabled by photoresponsive host-guest molecular recognition. Adv. Mater. 2019, 31, 1807328.
doi: 10.1002/adma.v31.12
Huang, H.; Orlova, T.; Matt, B; Katsonis, N. Long lived supramolecular helices promoted by fluorinated photoswitches. Macromol. rapid comm. 2018, 39, 1700387.
doi: 10.1002/marc.v39.1
Ren, H.; Chen, D.; Shi, Y.; Yu, H.; Fu, Z.; Yang, W. Charged end-group terminated poly(N-isopropylacrylamide)-b-poly(carboxylic azo) with unusual thermoresponsive behaviors. Macromolecules 2018, 51, 3290-3298.
doi: 10.1021/acs.macromol.7b02640
Yang, C.; Chen, L.; Huang, H.; Lu, Y.; Yi, J. Synthesis and properties of thermo-responsive azobenzene-based supramolecular dendronized copolymer. Polym. Bul. 2018, 1-11.
Si, Q.; Feng, Y.; Yang, W.; Fu, L.; Yan, Q.; Dong, Long P.; Feng, W. Controllable and stable deformation of a self-healing photo-responsive supramolecular assembly for an optically actuated manipulator arm. ACS Appl. Mater. Interface 2018, 10, 29909-29917.
doi: 10.1021/acsami.8b08025
Qin, C.; Feng, Y.; An, H.; Han, J.; Cao, C.; Feng, W. Tetracarboxylated azobenzene/polymer supramolecular assemblies as high-performance multiresponsive actuators. ACS Appl. Mater. Interface 2017, 9, 4066-4073.
doi: 10.1021/acsami.6b15075
Shen, Y. T.; Deng, K.; Zhang, X. M.; Feng, W.; Zeng, Q. D.; Wang, C.; Gong, J. R. Switchable ternary nanoporous supramolecular network on photo-regulation. Nano lett. 2011, 11(8), 3245-3250.
doi: 10.1021/nl201504x
Goodman, M.; Falxa, M. L. Conformational aspects of polypeptide structure. XXIII. Photoisomerization of azoaromatic polypeptides. J. Am. Chem. Soc. 1967, 89, 3863-3867.
doi: 10.1021/ja00991a031
Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149-2180.
doi: 10.1002/adma.v23.19
Pawlicka, A.; Sabadini, R. C.; Nunzi, J. M. Reversible light-induced solubility of disperse red 1 dye in a hydroxypropyl cellulose matrix. Cellulose 2018, 25, 2083-2090.
doi: 10.1007/s10570-018-1672-z
Drotlef, D. M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 2017, 29, 1701353.
doi: 10.1002/adma.v29.28
Feng, Y.; Feng, W. Photo-responsive perylene diimid-azobenzene dyad: Photochemistry and its morphology control by self-assembly. Opt. Mater. 2008, 30, 876-880.
doi: 10.1016/j.optmat.2007.03.009
Feng, Y.; Feng, W.; Noda, H.; Sekino, T.; Fujii, A.; Ozaki, M.; Yoshino, K. Synthesis of photoresponsive azobenzene chromophore-modified multi-walled carbon nanotubes. Carbon 2007, 12, 2445-2448.
doi: 10.1016/j.carbon.2007.07.011
Zhao, X.; Feng, Y.; Qin, C.; Yang, W.; Si, Q.; Feng, W. Controlling heat release from a close-packed bisazobenzene-reduced-graphene-oxide assembly film for high-energy solid-state photothermal fuels. Chem. Sus. Chem. 2017, 10, 1395-1404.
doi: 10.1002/cssc.v10.7
Yang, W.; Feng, Y.; Si, Q.; Yan, Q.; Long, P.; Dong, L.; Fu, L.; Feng, W. Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output. J. Mater. Chem. A 2019, 7, 97-106.
doi: 10.1039/C8TA05333B
Li, M.; Feng, Y.; Liu, E.; Qin, C.; Feng, W. Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure. Sci. China Technol. Sci. 2016, 59, 1383-1390.
doi: 10.1007/s11431-016-6091-5
Luo, W.; Feng, Y.; Cao, C.; Li, M.; Liu, E.; Li, S.; Qin C.; Hu, W.; Feng, W. A high energy density azobenzene/graphene hybrid: A nano-templated platform for solar thermal storage. J. Mater. Chem. A 2015, 3, 11787-11795.
doi: 10.1039/C5TA01263E
Chen, D.; Liu, H.; Kobayashi, T.; Yu, H. Multiresponsive reversible gels based on a carboxylic azo polymer. J. Mater. Chem. 2010, 20, 3610-3614.
doi: 10.1039/b925163d
Ni, Y.; Li, X.; Hu, J.; Huang, S.; Yu, H. Supramolecular liquid-crystalline polymer organogel: Fabrication, multiresponsiveness, and holographic switching properties. Chem. Mater. 2019, 31, 3388-3394.
doi: 10.1021/acs.chemmater.9b00551
Qin, L.; Gu, W.; Wei, J.; Yu, Y. Piecewise phototuning of self-organized helical superstructures. Adv. Mater. 2018, 30, 1704941.
doi: 10.1002/adma.v30.8
Feng, Y.; Liu, H.; Luo, W.; Liu, E.; Zhao, N.; Yoshino, K.; Feng, W. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage. Sci. Rep. 2013, 3, 3260.
doi: 10.1038/srep03260
Dong, L.; Feng, Y.; Wang, L.; Feng, W. Azobenzene-based solar thermal fuels: Design, properties, and applications. Chem. Soc. Rev. 2018, 47, 7339-7368.
doi: 10.1039/C8CS00470F
Han, G. G.; Li, H.; Grossman, J. C. Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat. Comm. 2017, 8, 1446.
doi: 10.1038/s41467-017-01608-y
Kolpak, A. M.; Grossman, J. C. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett. 2011, 11, 3156-3162.
doi: 10.1021/nl201357n
Kimizuka, N.; Yanai, N.; Morikawa, M. A. Photon upconversion and molecular solar energy storage by maximizing the potential of molecular self-assembly. Langmuir 2016, 32, 12304-12322.
doi: 10.1021/acs.langmuir.6b03363
Feng, W.; Li, S.; Li, M.; Qin, C.; Feng, Y. An energy-dense and thermal-stable bis-azobenzene/hybrid templated assembly for solar thermal fuel. J. Mater. Chem. A 2016, 4, 8020-8028.
doi: 10.1039/C6TA00221H
Saydjari, A. K.; Weis, P.; Wu, S. Spanning the solar spectrum: Azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv. Energy Mater. 2017, 7, 1601622.
doi: 10.1002/aenm.201601622
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Yingjie Wang , Peng Tang , Wenchao Tu , Qi Gao , Cuizhu Wang , Luying Tan , Lixin Zhao , Hongye Han , Liefeng Ma , Kouharu Otsuki , Weilie Xiao , Wenli Wang , Jinping Liu , Yong Li , Zhajun Zhan , Wei Li , Xianli Zhou , Ning Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Tiantian Zheng , Huiyi Wang , Huimin Li , Xuanhe Liu , Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Yu-Hang Miao , Zheng-Xu Zhang , Xu-Yi Huang , Yuan-Zhao Hua , Shi-Kun Jia , Xiao Xiao , Min-Can Wang , Li-Ping Xu , Guang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Zhaoru Chen , Xiaoxu Liu , Haonan Chen , Jialong Li , Xiaofeng Wang , Jianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194
Binhan Zhao , Zheng Li , Lan Zheng , Zhichao Ye , Yuyang Yuan , Shanshan Zhang , Bo Liang , Tianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Yanwei Duan , Qing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905