Citation: Hui-Tao Yu, Jun-Wen Tang, Yi-Yu Feng, Wei Feng. Structural Design and Application of Azo-based Supramolecular Polymer Systems[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1183-1199. doi: 10.1007/s10118-019-2331-z shu

Structural Design and Application of Azo-based Supramolecular Polymer Systems

  • Corresponding author: Wei Feng, weifeng@tju.edu.cn
  • Received Date: 16 May 2019
    Revised Date: 13 July 2019
    Available Online: 25 September 2019

  • This article presents a brief overview of recent advances in azo-containing supramolecular systems. In literature, it has been shown that azo supramolecular polymers and their composite materials exhibit fast and intelligent responses to various external stimuli, such as temperature, pH change, redox reagents, ligands, coupling reagents, etc. In applications, these systems are widely used for molecular motors, shape memory, liquid crystal, solar thermal energy storage, signal transmission, intelligent encryption, and other purposes. Furthermore, these systems can function as key components for device upgrade processing. However, the design and rules of azo supramolecular polymers are still not supported by an exact theory. Information about the relationship between the spatial structure and behavior is lacking, and new supramolecular materials cannot be designed by adding functional moieties to known azo polymers. Based on the current research status, this review mainly summarizes the structural design principles as well as structures and applications of known azo supramolecules; meanwhile, it highlights the emerging development fields, recent advances, and prospects in fabricating self-assembling intelligent supramolecular systems with azo supramolecular polymers as responsive units. The goal of this review is to bring new inspiration to researchers who want to optimize the chemical structure, steric conformation, electrostatic environment, and specific molecular functionalization.
  • 加载中
    1. [1]

      Lehn, J. M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. 1988, 27, 89-112.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Yagai, S.; Karatsu, T.; Kitamura, A. Photocontrollable self-assembly. Chem. Eur. J. 2005, 11, 4054-4063.  doi: 10.1002/(ISSN)1521-3765

    3. [3]

      Cheng, M. J.; Zhang, Q.; Shi, F. Macroscopic supramolecular assembly and its applications. Chinese J. Polym. Sci. 2018, 36, 306-321.  doi: 10.1007/s10118-018-2069-z

    4. [4]

      Cao, C.; Li, Y.; Feng Y. Y.; Long, P.; An, H. R.; Qin, C. Q.; Han, J. K.; Li S. W.; Feng, W. A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 22519-22526.  doi: 10.1039/C7TA05787C

    5. [5]

      Archut, A.; Vögtle, F.; De Cola, L.; Azzellini, G. C.; Balzani, V.; Ramanujam, P. S.; Berg, R. H. Azobenzene functionalized cascade molecules: Photoswitchable supramolecular systems. Chem. Eur. J. 1998, 4, 699-706.  doi: 10.1002/(ISSN)1521-3765

    6. [6]

      Fabbrizzi. L.; Poggi, A. Sensors and switches from supramolecular chemistry. Chem. Soc. Rev. 1995, 24, 197-202.  doi: 10.1039/cs9952400197

    7. [7]

      Lehn, J. M. Supramolecular chemistry: Receptors, catalysts, and carriers. Science 1985, 227, 849-856.  doi: 10.1126/science.227.4689.849

    8. [8]

      Chu, Z.; Han, Y.; Bian, T.; De, S.; Král, P.; Klajn, R. Supramolecular control of azobenzene switching on nanoparticles. J. Am. Chem. Soc. 2018, 141, 1949-1960.  doi: 10.1021/jacs.8b09638

    9. [9]

      Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev. 2014, 115, 7794-7839.  doi: 10.1021/cr500392w

    10. [10]

      Mattia, E.; Otto, S. Supramolecular systems chemistry. Nat. Nanotech. 2015, 10, 111.  doi: 10.1038/nnano.2014.337

    11. [11]

      Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Halogen bonding in supramolecular chemistry. Chem. Rev. 2015, 115, 7118-7195.  doi: 10.1021/cr500674c

    12. [12]

      Lehn, J. M. Supramolecular chemistry: Where from? Where to? Chem. Soc. Rev. 2017, 46, 2378-2379.  doi: 10.1039/C7CS00115K

    13. [13]

      Delbianco, M.; Bharate, P.; Varela-Aramburu, S.; Seeberger, P. H. Carbohydrates in supramolecular chemistry. Chem. Rev. 2015, 116, 1693-1752.  doi: 10.1021/acs.chemrev.5b00516

    14. [14]

      Zeng, F.; Zimmerman, S. C. Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly. Chem. Rev. 1997, 97, 1681-1712.  doi: 10.1021/cr9603892

    15. [15]

      Huang, F.; Scherman, O. A. Supramolecular polymers. Chem. Soc. Rev. 2012, 41, 5879-5880.  doi: 10.1039/c2cs90071h

    16. [16]

      Stupp, S. I.; Keser, M.; Tew, G. N. Functionalized supramolecular materials. Polymer. 1998, 39, 4505-4508.  doi: 10.1016/S0032-3861(98)00047-0

    17. [17]

      Bernhardt, P. V. A supramolecular synthon for H-bonded transition metal arrays. Inorg. Chem. 1999, 38, 3481-3483.  doi: 10.1021/ic990074f

    18. [18]

      Liu, Z. F.; Hashimoto, K.; Fujishima, A. Photoelectrochemical information storage using an azobenzene derivative. Nature 1990, 347, 658.  doi: 10.1038/347658a0

    19. [19]

      Freundlich, H.; Heller, W. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc. 1939, 61, 2228-2230.  doi: 10.1021/ja01877a071

    20. [20]

      Kumar, S.; Dinesha, P.; Rosen, M. A. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy, 2019, 185, 1163-1173.  doi: 10.1016/j.energy.2019.07.124

    21. [21]

      Hartley, G. S. The cis-form of azobenzene. Nature 1937, 140, 281.  doi: 10.1038/140281a0

    22. [22]

      Gauglitz, G.; Hubig, S. Chemical actinometry in the UV by azobenzene in concentrated solution: a convenient method. J. Photochemistry, 1985, 30, 121-125.  doi: 10.1016/0047-2670(85)85018-8

    23. [23]

      Balzani, V.; Credi, A., Raymo, F. M.; Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 2000, 39, 3348-3391.  doi: 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X

    24. [24]

      Ueno, A.; Yoshimura, H.; Saka, R.; Osa, T. Photocontrol of binding ability of capped cyclodextrin. J. Am. Chem. Soc. 1979, 101, 2779-2780.  doi: 10.1021/ja00504a070

    25. [25]

      Emoto, A.; Uchida, E.; Fukuda, T. Optical and physical applications of photocontrollable materials: Azobenzene-containing and liquid crystalline polymers. Polymers 2012, 4, 150-186.  doi: 10.3390/polym4010150

    26. [26]

      Tejedor, R. M.; Oriol, L.; Serrano, J. L.; Partal Ureña, F.; López González, J. J. Photoinduced chiral nematic organization in an achiral glassy nematic azopolymer. Adv. Funct. Mater. 2007, 17, 3486-3492.  doi: 10.1002/adfm.v17:17

    27. [27]

      Priewisch, B.; Rück-Braun, K. Efficient preparation of nitrosoarenes for the synthesis of azobenzenes. J. org. Chem. 2005, 70, 2350-2352.  doi: 10.1021/jo048544x

    28. [28]

      Feng, W.; Luo, W.; Feng, Y. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: Structures, properties and application. Nanoscale 2012, 4, 6118-6134.  doi: 10.1039/c2nr31505j

    29. [29]

      Beharry, A. A.; Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011, 40, 4422-4437.  doi: 10.1039/c1cs15023e

    30. [30]

      Goulet-Hanssens, A.; Barrett, C. J. Photo-control of biological systems with azobenzene polymers. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3058-3070.  doi: 10.1002/pola.26735

    31. [31]

      Dong, R.; Liu, Y.; Zhou, Y.; Yan, D.; Zhu, X. Photo-reversible supramolecular hyperbranched polymer based on host-guest interactions. Polym. Chem. 2011, 2, 2771-2774.  doi: 10.1039/c1py00426c

    32. [32]

      Qin, M.; Xu, Y.; Cao, R.; Feng, W.; Chen, L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 2018, 28, 1805053.  doi: 10.1002/adfm.v28.45

    33. [33]

      Poutanen, M.; Ikkala, O.; Priimagi, A. Structurally controlled dynamics in azobenzene-based supramolecular self-assemblies in solid state. Macromolecules 2016, 49, 4095-4101.  doi: 10.1021/acs.macromol.6b00562

    34. [34]

      Vapaavuori, J.; Ras, R. H.; Kaivola, M.; Bazuin, C. G.; Priimagi, A. From partial to complete optical erasure of azobenzene-polymer gratings: Effect of molecular weight. J. Mater. Chem. C 2015, 3, 11011-11016.  doi: 10.1039/C5TC01776A

    35. [35]

      Wie, J. J.; Wang, D. H.; Lee, K. M.; White, T. J.; Tan, L. S. The contribution of hydrogen bonding to the photomechanical response of azobenzene-functionalized polyamides. J. Mater. Chem. C 2018, 6, 5964-5974.  doi: 10.1039/C8TC00319J

    36. [36]

      Oscurato, S. L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics 2018, 7, 1387-1422.  doi: 10.1515/nanoph-2018-0040

    37. [37]

      Yagai, S.; Nakajima, T.; Karatsu, T.; Saitow, K. I.; Kitamura, A. Phototriggered self-assembly of hydrogen-bonded rosette. J. Am. Chem. Soc. 2004, 126, 11500-11508.  doi: 10.1021/ja047783z

    38. [38]

      Zhan, T. G.; Lin, M. D.; Wei, J.; Liu, L. J.; Yun, M. Y.; Wu, L; Zheng, S. T.; Yin, H. H.; Li, C. K.; Zhang, K. D. Visible-light responsive hydrogen-bonded supramolecular polymers based on ortho-tetrafluorinated azobenzene. Polym. Chem. 2017, 8, 7384-7389.  doi: 10.1039/C7PY01612C

    39. [39]

      Groombridge, A. S.; Palma, A.; Parker, R. M.; Abell, C.; Scherman, O. A. Aqueous interfacial gels assembled from small molecule supramolecular polymers. Chem. Sci. 2017, 8, 1350-1355.  doi: 10.1039/C6SC04103E

    40. [40]

      Du, M.; Li, L.; Zhang, J.; Li, K.; Cao, M.; Mo, L.; Hua, G.; Chen, Y.; Yu, H.; Yang, H. Photoresponsive iodine-bonded liquid crystals based on azopyridine derivatives with a low phase-transition temperature. Liquid Crystals 2019, 46, 37-44.  doi: 10.1080/02678292.2018.1468040

    41. [41]

      Chen, Y.; Yu, H.; Zhang, L.; Yang, H.; Lu, Y. Photoresponsive liquid crystals based on halogen bonding of azopyridines. Chem. Comm. 2014, 50, 9647-9649.  doi: 10.1039/C4CC02344G

    42. [42]

      Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem. Soc. Rev. 2015, 44, 815-832.  doi: 10.1039/C4CS00327F

    43. [43]

      Zhou, W.; Kobayashi, T.; Zhu, H.; Yu, H. Electrically conductive hybrid nanofibers constructed with two amphiphilic salt components. Chem. Comm. 2011, 47, 12768-12770.  doi: 10.1039/c1cc14145g

    44. [44]

      Gao, J.; He, Y.; Xu, H.; Song, B.; Zhang, X.; Wang, Z.; Wang, X. Azobenzene-containing supramolecular polymer films for laser-induced surface relief gratings. Chem. Mater. 2007, 19, 14-17.  doi: 10.1021/cm061902n

    45. [45]

      Cui, L.; Zhao, Y. Azopyridine side chain polymers: an efficient way to prepare photoactive liquid crystalline materials through self-assembly. Chem. Mater. 2004, 16, 2076-2082.  doi: 10.1021/cm0348850

    46. [46]

      Shibaev, P. V.; Schaumburg, K.; Plaksin, V. Responsive chiral hydrogen-bonded polymer composites. Chem. Mater. 2002, 14, 959-961.  doi: 10.1021/cm011510a

    47. [47]

      Zettsu, N.; Ogasawara, T.; Mizoshita, N.; Nagano, S.; Seki, T. Photo-triggered surface relief grating formation in supramolecular liquid crystalline polymer systems with detachable azobenzene unit. Adv. Mater. 2008, 20, 516-521.  doi: 10.1002/(ISSN)1521-4095

    48. [48]

      Li, S.; Feng, Y.; Long, P.; Qin, C.; Feng, W. The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes. J. Mater. Chem. C 2017, 5, 5068-5075.  doi: 10.1039/C7TC00142H

    49. [49]

      Hu, Y.; Wu, K. Y.; Zhu, T.; Shen, P.; Zhou, Y.; Li, X.; Wang, C. L.; Tu, Y.; Li, C. Y. Unique supramolecular liquid-crystal phases with different two-dimensional crystal layers. Angew. Chem. 2018, 130, 13642-13646.  doi: 10.1002/ange.201805717

    50. [50]

      Huang, C. W.; Ji, W. Y.; Kuo, S. W. Stimuli-responsive supramolecular conjugated polymer with phototunable surface relief grating. Polym. Chem. 2018, 9, 2813-2820.  doi: 10.1039/c8py00439k

    51. [51]

      Mosciatti, T.; Bonacchi, S.; Gobbi, M.; Ferlauto, L.; Liscio, F.; Giorgini, L.; Orgiu, E.; Samorì, P. Optical input/electrical output memory elements based on a liquid crystalline azobenzene polymer. ACS Appl. Mater. Interface 2016, 8, 6563-6569.  doi: 10.1021/acsami.5b12430

    52. [52]

      Jansze, S. M.; Cecot, G.; Severin, K. Reversible disassembly of metallasupramolecular structures mediated by a metastable-state photoacid. Chem. Sci. 2018, 9, 4253-4257  doi: 10.1039/c8sc01108g

    53. [53]

      Park, J.; Feng, D.; Yuan, S.; Zhou, H. C. Photochromic metal-organic frameworks: reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. 2015, 54, 430-435.  doi: 10.1002/anie.201408862

    54. [54]

      Vapaavuori, J.; Bazuin, C. G.; Priimagi, A. Supramolecular design principles for efficient photoresponsive polymer-azobenzene complexes. J. Mater. Chem. C 2018, 6, 2168-2188.  doi: 10.1039/C7TC05005D

    55. [55]

      Wang, L.; Yin, L.; Zhang, W.; Zhu, X.; Fujiki, M. Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium. J. Am. Chem. Soc. 2017, 139, 13218-13226.  doi: 10.1021/jacs.7b07626

    56. [56]

      Cui, Y.; Gong, H.; Wang, Y.; Li, D.; Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater. 2018, 30, 1706807.  doi: 10.1002/adma.v30.14

    57. [57]

      Li, Z. Y.; Chen, Y.; Wu, H.; Liu, Y. Photoinduced assembly/disassembly of supramolecular nanoparticle based on polycationic cyclodextrin and azobenzene-containing surfactant. ChemistrySelect 2018, 3, 3203-3207.  doi: 10.1002/slct.201703091

    58. [58]

      Yu, H.; Liu, H.; Kobayashi, T. Fabrication and photoresponse of supramolecular liquid-crystalline microparticles. ACS appl. Mater. Interface 2011, 3, 1333-1340.  doi: 10.1021/am2001289

    59. [59]

      Sun, Z.; Huang, Q.; He, T.; Li, Z.; Zhang, Y.; Yi, L. Multistimuli-responsive supramolecular gels: Design rationale, recent advances, and perspectives. Chem. Phys. Chem. 2014, 15, 2421-2430.  doi: 10.1002/cphc.201402187

    60. [60]

      Zhang, X.; Ma, X.; Wang, K.; Lin, S.; Zhu, S.; Dai, Y.; Xia, F. Recent advances in cyclodextrin-based light-responsive supramolecular systems. Macromol. Rapid Comm. 2018, 39, 1800142.  doi: 10.1002/marc.v39.11

    61. [61]

      Fox, J. D.; Rowan, S. J. Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules 2009, 42, 6823-6835.  doi: 10.1021/ma901144t

    62. [62]

      Schoelch, S.; Vapaavuori, J.; Rollet, F. G.; Barrett, C. J. The orange side of disperse red 1: Humidity-driven color switching in supramolecular azo-polymer materials based on reversible dye aggregation. Macromol. Rap. Comm. 2017, 38, 1600582.  doi: 10.1002/marc.v38.1

    63. [63]

      Li, Z. Y.; Zhang, Y.; Zhang, C. W.; Chen, L. J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H. B. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5] arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 2014, 136, 8577-8589.  doi: 10.1021/ja413047r

    64. [64]

      Baroncini, M.; Bergamini, G. Azobenzene: A photoactive building block for supramolecular architectures. Chem. Rec. 2017, 17, 700-712.  doi: 10.1002/tcr.v17.7

    65. [65]

      Stoffelen, C.; Voskuhl, J.; Jonkheijm, P.; Huskens, J. Dual stimuli-responsive self-assembled supramolecular nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 3400-3404.  doi: 10.1002/anie.201310829

    66. [66]

      Hou, P. P.; Zhang, Z. Y.; Wang, Q.; Zhang, M. Y.; Shen, Z.; Fan, X. H. Hierarchical structures in a main-chain/side-chain combined liquid crystalline polymer with a polynorbornene backbone and multi-benzene side-chain mesogens. Macromolecules 2016, 49, 7238-7245.  doi: 10.1021/acs.macromol.6b01524

    67. [67]

      Chen, H.; Ma, X.; Wu, S.; Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int. Ed. 2014, 53, 14149-14152.  doi: 10.1002/anie.v53.51

    68. [68]

      Shen, P.; Qiu, L. Dual-responsive recurrent self-assembly of a supramolecular polymer based on the host-guest complexation interaction between β-cyclodextrin and azobenzene. New J. Chem. 2018, 42, 3593-3601.  doi: 10.1039/C7NJ05042A

    69. [69]

      Kuad, P.; Miyawaki, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer. J. Am. Chem. Soc. 2007, 129, 12630-12631.  doi: 10.1021/ja075139p

    70. [70]

      Zhang, X.; Feng, Y.; Huang, D.; Li, Y.; Feng, W. Investigation of optical modulated conductance effects based on a graphene oxide-azobenzene hybrid. Carbon 2010, 48, 3236-3241.  doi: 10.1016/j.carbon.2010.05.009

    71. [71]

      Bortolus, P.; Monti, S. Cis. dblharw. trans photoisomerization of azobenzene-cyclodextrin inclusion complexes. J. Phys. Chem. 1987, 91, 5046-5050.  doi: 10.1021/j100303a032

    72. [72]

      Wang, Y.; Ma, N.; Wang, Z.; Zhang, X. Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with α-cyclodextrin. Angew. Chem. Int. Ed. 2014, 46, 2823-2826.  doi: 10.1002/anie.200604982

    73. [73]

      Zhang, X.; Feng, Y.; Lv, P.; Shen, Y.; Feng, W. Enhanced reversible photoswitching of azobenzene unctionalized graphene oxide hybrids. Langmuir 2010, 26, 18508-18511.  doi: 10.1021/la1037537

    74. [74]

      Leenders, C. M.; Albertazzi, L.; Mes, T.; Koenigs, M. M.; Palmans, A. R.; Meijer, E. W. Supramolecular polymerization in water harnessing both hydrophobic effects and hydrogen bond formation. Chem. Commun. 2013, 49, 1963-1965.  doi: 10.1039/c3cc38949a

    75. [75]

      Nie, J.; Liu, X.; Yan, Y.; Zhang, H. Supramolecular hydrogen-bonded photodriven actuators based on an azobenzene-containing main-chain liquid crystalline poly(ester-amide). J. Mater. Chem. C 2017, 5, 10391-10398.  doi: 10.1039/C7TC02943H

    76. [76]

      Toh, C. L.; Xu, J.; Lu, X.; He, C. Synthesis and characterisation of main-chain hydrogen-bonded supramolecular liquid crystalline complexes formed by azo-containing compounds. Liquid Crystals 2008, 35, 241-251.  doi: 10.1080/02678290701862355

    77. [77]

      Rogness, D. C.; Riedel, P. J.; Sommer, J. R.; Reed, D. F.; Wiegel, K. N. Supramolecular main chain liquid crystalline polymers utilizing azopyridine derivatives. Liquid crystals 2006, 33, 567-572.  doi: 10.1080/02678290600604973

    78. [78]

      Sun, R.; Xue, C.; Ma, X.; Gao, M.; Tian, H.; Li, Q. Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p-sulfonatocalix[4] arene) and pseudorotaxane. J. Am. Chem. Soc. 2013, 135, 5990-5993.  doi: 10.1021/ja4016952

    79. [79]

      Haque, H. A.; Hara, M.; Nagano, S.; Seki, T. Photoinduced in-plane motions of azobenzene mesogens affected by the flexibility of underlying amorphous chains. Macromolecules 2013, 46, 8275-8283.  doi: 10.1021/ma401536r

    80. [80]

      Dai, Y.; Zhang, X. Dual stimuli-responsive supramolecular polymeric nanoparticles based on poly (α-cyclodextrin) and acetal-modified β-cyclodextrin-azobenzene. J. Polym. Res. 2018, 25, 102.  doi: 10.1007/s10965-018-1503-9

    81. [81]

      Haque, H. A.; Kakehi, S.; Hara, M.; Nagano, S.; Seki, T. High-density liquid-crystalline azobenzene polymer brush attained by surface-initiated ring-opening metathesis polymerization. Langmuir 2013, 29, 7571-7575.  doi: 10.1021/la4002847

    82. [82]

      Maity, C.; Hendriksen, W. E.; van Esch, J. H.; Eelkema, R. Spatial structuring of a supramolecular hydrogel by using a visible-light triggered catalyst. Angew. Chem. Int. Ed. 2015, 54, 998-1001.  doi: 10.1002/anie.201409198

    83. [83]

      Lee, S.; Oh, S.; Lee, J.; Malpani, Y.; Jung, Y. S.; Kang, B.; Lee, J. Y.; Ozasa, K.; Isoshima, T.; Lee, S. Y.; Hara, M.; Hashizume, D.; Hara, M. Stimulus-responsive azobenzene supramolecules: Fibers, gels, and hollow spheres. Langmuir 2013, 29, 5869-5877.  doi: 10.1021/la400159m

    84. [84]

      Kim, D. Y.; Shin, S.; Yoon, W. J.; Choi, Y. J.; Hwang, J. K.; Kim, J. S.; Lee C. R.; Choi, T. L.; Jeong, K. U. From smart denpols to remote-controllable actuators: Hierarchical superstructures of azobenzene-based polynorbornenes. Adv. Funct. Mater. 2017, 27, 1606294.  doi: 10.1002/adfm.201606294

    85. [85]

      Fréchet, J. M. Dendrimers and supramolecular chemistry. Proc. Natl. Acad. Sci. 2002, 99, 4782-4787.  doi: 10.1073/pnas.082013899

    86. [86]

      Qin, C.; Feng, Y.; Luo, W.; Cao, C.; Hu, W.; Feng, W. A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J. Mater. Chem. A 2015, 3, 16453-16460.  doi: 10.1039/C5TA01543J

    87. [87]

      Li, W.; Zhang, A.; Feldman, K.; Walde, P.; Schlüter, A. D. Thermoresponsive dendronized polymers. Macromolecules 2008, 41, 3659-3667.  doi: 10.1021/ma800129w

    88. [88]

      Roeser, J.; Moingeon, F.; Heinrich, B.; Masson, P.; Arnaud-Neu, F.; Rawiso, M.; Méry, S. Dendronized polymers with peripheral oligo(ethylene oxide) chains: Thermoresponsive behavior and shape anisotropy in solution. Macromolecules 2011, 44, 8925-8935.  doi: 10.1021/ma2016776

    89. [89]

      Liu, L.; Li, W.; Liu, K.; Yan, J.; Hu, G.; Zhang, A. Comblike thermoresponsive polymers with sharp transitions: Synthesis, characterization, and their use as sensitive colorimetric sensors. Macromolecules 2011, 44, 8614-8621.  doi: 10.1021/ma201874c

    90. [90]

      Chivers, P. R.; Smith, D. K. Shaping and structuring supramolecular gels. Nature Rev. Mater. 2019, 1, 463-478.

    91. [91]

      Yagai, S.; Kitamura, A. Recent advances in photoresponsive supramolecular self-assemblies. Chem. Soc. Rev. 2008, 37, 1520-1529.  doi: 10.1039/b703092b

    92. [92]

      Stoychev, G.; Kirillova, A.; Ionov, L. Light-responsive shape-changing polymers. Adv. Opt. Mater. 2019, 1900067.  doi: 10.1002/adom.201900067

    93. [93]

      Kato, T.; Hirota, N.; Fujishima, A.; Fréchet, J. M. Supramolecular hydrogen-bonded liquid-crystalline polymer complexes. Design of side-chain polymers and a host-guest system by noncovalent interaction. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 57-62.  doi: 10.1002/(SICI)1099-0518(19960115)34:1<57::AID-POLA5>3.0.CO;2-0

    94. [94]

      Wiedbrauk, S.; Dube, H. Hemithioindigo-An emerging photoswitch. Tetrahedron Lett. 2015, 56, 4266-4274.  doi: 10.1016/j.tetlet.2015.05.022

    95. [95]

      Yao, X.; Li, T.; Wang, J.; Ma, X.; Tian, H. Recent progress in photoswitchable supramolecular self-assembling systems. Adv. Optical Mater. 2016, 4, 1322-1349.  doi: 10.1002/adom.201600281

    96. [96]

      Wang, H.; Zhu, C. N.; Zeng, H.; Ji, X.; Xie, T.; Yan, X.; Wu, Z.; Huang, F. Reversible ion-conducting switch in a novel single-ion supramolecular hydrogel enabled by photoresponsive host-guest molecular recognition. Adv. Mater. 2019, 31, 1807328.  doi: 10.1002/adma.v31.12

    97. [97]

      Huang, H.; Orlova, T.; Matt, B; Katsonis, N. Long lived supramolecular helices promoted by fluorinated photoswitches. Macromol. rapid comm. 2018, 39, 1700387.  doi: 10.1002/marc.v39.1

    98. [98]

      Ren, H.; Chen, D.; Shi, Y.; Yu, H.; Fu, Z.; Yang, W. Charged end-group terminated poly(N-isopropylacrylamide)-b-poly(carboxylic azo) with unusual thermoresponsive behaviors. Macromolecules 2018, 51, 3290-3298.  doi: 10.1021/acs.macromol.7b02640

    99. [99]

      Yang, C.; Chen, L.; Huang, H.; Lu, Y.; Yi, J. Synthesis and properties of thermo-responsive azobenzene-based supramolecular dendronized copolymer. Polym. Bul. 2018, 1-11.

    100. [100]

      Si, Q.; Feng, Y.; Yang, W.; Fu, L.; Yan, Q.; Dong, Long P.; Feng, W. Controllable and stable deformation of a self-healing photo-responsive supramolecular assembly for an optically actuated manipulator arm. ACS Appl. Mater. Interface 2018, 10, 29909-29917.  doi: 10.1021/acsami.8b08025

    101. [101]

      Qin, C.; Feng, Y.; An, H.; Han, J.; Cao, C.; Feng, W. Tetracarboxylated azobenzene/polymer supramolecular assemblies as high-performance multiresponsive actuators. ACS Appl. Mater. Interface 2017, 9, 4066-4073.  doi: 10.1021/acsami.6b15075

    102. [102]

      Shen, Y. T.; Deng, K.; Zhang, X. M.; Feng, W.; Zeng, Q. D.; Wang, C.; Gong, J. R. Switchable ternary nanoporous supramolecular network on photo-regulation. Nano lett. 2011, 11(8), 3245-3250.  doi: 10.1021/nl201504x

    103. [103]

      Goodman, M.; Falxa, M. L. Conformational aspects of polypeptide structure. XXIII. Photoisomerization of azoaromatic polypeptides. J. Am. Chem. Soc. 1967, 89, 3863-3867.  doi: 10.1021/ja00991a031

    104. [104]

      Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149-2180.  doi: 10.1002/adma.v23.19

    105. [105]

      Pawlicka, A.; Sabadini, R. C.; Nunzi, J. M. Reversible light-induced solubility of disperse red 1 dye in a hydroxypropyl cellulose matrix. Cellulose 2018, 25, 2083-2090.  doi: 10.1007/s10570-018-1672-z

    106. [106]

      Drotlef, D. M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 2017, 29, 1701353.  doi: 10.1002/adma.v29.28

    107. [107]

      Feng, Y.; Feng, W. Photo-responsive perylene diimid-azobenzene dyad: Photochemistry and its morphology control by self-assembly. Opt. Mater. 2008, 30, 876-880.  doi: 10.1016/j.optmat.2007.03.009

    108. [108]

      Feng, Y.; Feng, W.; Noda, H.; Sekino, T.; Fujii, A.; Ozaki, M.; Yoshino, K. Synthesis of photoresponsive azobenzene chromophore-modified multi-walled carbon nanotubes. Carbon 2007, 12, 2445-2448.  doi: 10.1016/j.carbon.2007.07.011

    109. [109]

      Zhao, X.; Feng, Y.; Qin, C.; Yang, W.; Si, Q.; Feng, W. Controlling heat release from a close-packed bisazobenzene-reduced-graphene-oxide assembly film for high-energy solid-state photothermal fuels. Chem. Sus. Chem. 2017, 10, 1395-1404.  doi: 10.1002/cssc.v10.7

    110. [110]

      Yang, W.; Feng, Y.; Si, Q.; Yan, Q.; Long, P.; Dong, L.; Fu, L.; Feng, W. Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output. J. Mater. Chem. A 2019, 7, 97-106.  doi: 10.1039/C8TA05333B

    111. [111]

      Li, M.; Feng, Y.; Liu, E.; Qin, C.; Feng, W. Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure. Sci. China Technol. Sci. 2016, 59, 1383-1390.  doi: 10.1007/s11431-016-6091-5

    112. [112]

      Luo, W.; Feng, Y.; Cao, C.; Li, M.; Liu, E.; Li, S.; Qin C.; Hu, W.; Feng, W. A high energy density azobenzene/graphene hybrid: A nano-templated platform for solar thermal storage. J. Mater. Chem. A 2015, 3, 11787-11795.  doi: 10.1039/C5TA01263E

    113. [113]

      Chen, D.; Liu, H.; Kobayashi, T.; Yu, H. Multiresponsive reversible gels based on a carboxylic azo polymer. J. Mater. Chem. 2010, 20, 3610-3614.  doi: 10.1039/b925163d

    114. [114]

      Ni, Y.; Li, X.; Hu, J.; Huang, S.; Yu, H. Supramolecular liquid-crystalline polymer organogel: Fabrication, multiresponsiveness, and holographic switching properties. Chem. Mater. 2019, 31, 3388-3394.  doi: 10.1021/acs.chemmater.9b00551

    115. [115]

      Qin, L.; Gu, W.; Wei, J.; Yu, Y. Piecewise phototuning of self-organized helical superstructures. Adv. Mater. 2018, 30, 1704941.  doi: 10.1002/adma.v30.8

    116. [116]

      Feng, Y.; Liu, H.; Luo, W.; Liu, E.; Zhao, N.; Yoshino, K.; Feng, W. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage. Sci. Rep. 2013, 3, 3260.  doi: 10.1038/srep03260

    117. [117]

      Dong, L.; Feng, Y.; Wang, L.; Feng, W. Azobenzene-based solar thermal fuels: Design, properties, and applications. Chem. Soc. Rev. 2018, 47, 7339-7368.  doi: 10.1039/C8CS00470F

    118. [118]

      Han, G. G.; Li, H.; Grossman, J. C. Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat. Comm. 2017, 8, 1446.  doi: 10.1038/s41467-017-01608-y

    119. [119]

      Kolpak, A. M.; Grossman, J. C. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett. 2011, 11, 3156-3162.  doi: 10.1021/nl201357n

    120. [120]

      Kimizuka, N.; Yanai, N.; Morikawa, M. A. Photon upconversion and molecular solar energy storage by maximizing the potential of molecular self-assembly. Langmuir 2016, 32, 12304-12322.  doi: 10.1021/acs.langmuir.6b03363

    121. [121]

      Feng, W.; Li, S.; Li, M.; Qin, C.; Feng, Y. An energy-dense and thermal-stable bis-azobenzene/hybrid templated assembly for solar thermal fuel. J. Mater. Chem. A 2016, 4, 8020-8028.  doi: 10.1039/C6TA00221H

    122. [122]

      Saydjari, A. K.; Weis, P.; Wu, S. Spanning the solar spectrum: Azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv. Energy Mater. 2017, 7, 1601622.  doi: 10.1002/aenm.201601622

  • 加载中
    1. [1]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    2. [2]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    3. [3]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    4. [4]

      Yingjie WangPeng TangWenchao TuQi GaoCuizhu WangLuying TanLixin ZhaoHongye HanLiefeng MaKouharu OtsukiWeilie XiaoWenli WangJinping LiuYong LiZhajun ZhanWei LiXianli ZhouNing Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955

    5. [5]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    6. [6]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    9. [9]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    10. [10]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

    11. [11]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    12. [12]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    13. [13]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    14. [14]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    15. [15]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    16. [16]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    17. [17]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    18. [18]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    19. [19]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    20. [20]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

Metrics
  • PDF Downloads(0)
  • Abstract views(885)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return