Citation: Yu Jiang, Nikos Hadjichristidis. pH-responsive AIE-active Polyethylene-based Block Copolymers[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 930-935. doi: 10.1007/s10118-019-2330-0 shu

pH-responsive AIE-active Polyethylene-based Block Copolymers

  • A novel synthetic strategy towards pH-responsive aggregation-induced emission (AIE)-active tetraphenylethene (TPE)-functionalized polyethylene-based block copolymers is presented. Tris(3-(4-(1,2,2-triphenylvinyl)phenoxy)propyl)borane was used to initiate the polyhomologation of dimethylsulfoxonium methylide to afford well-defined α-TPE-ω-OH linear polyethylenes (PE). The terminal hydroxyl groups were transformed to atom transfer radical polymerization (ATRP) initiating sites by esterification with α-bromoisobutyryl bromide, followed by polymerization of tert-butyl acrylate (tBA) to provide TPE-PE-b-PtBA block copolymers. After hydrolysis of the tBu group to COOH group, the corresponding pH-responsive TPE-PE-b-PAA block copolymers were obtained. All synthesized block copolymers revealed AIE behavior either in solution or bulk. Due to the pH-responsivity of PAA chains, the aggregation state at different pH and consequently the fluorescence intensity changed. Also, the synthesized block copolymers exhibited ion-specificity fluorescence properties.
  • 加载中
    1. [1]

      Bünzli, J. C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 2010, 110, 2729-2755.  doi: 10.1021/cr900362e

    2. [2]

      Jüstel, T.; Nikol, H.; Ronda, C. New developments in the field of luminescent materials for lighting and displays. Angew. Chem., Int. Ed. 1998, 37, 3084-3103.  doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Schmidt, A.; Anderson, M.; Armstrong, N. R. Electronic states of vapor deposited electron and hole transport agents and luminescent materials for light-emitting diodes. J. Appl. Phys. 1995, 78, 5619-5625.  doi: 10.1063/1.359685

    4. [4]

      Bredol, M.; Kynast, U.; Ronda, C. Designing luminescent materials. Adv. Mater. 1991, 3, 361-367.  doi: 10.1002/(ISSN)1521-4095

    5. [5]

      Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 1740-1741.

    6. [6]

      Förster, T.; Kasper, K. Ein konzentrationsumschlag der fluoreszenz des pyrens. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1955, 59, 976-980.  doi: 10.1002/bbpc.19550591018

    7. [7]

      Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B. Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452-7476.  doi: 10.1039/C8CS00444G

    8. [8]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.  doi: 10.1021/acs.chemrev.5b00263

    9. [9]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.  doi: 10.1039/c1cs15113d

    10. [10]

      Qin, A.; Lam, J. W. Y.; Tang, B. Z. Luminogenic polymers with aggregation-induced emission characteristics. Prog. Polym. Sci. 2012, 37, 182-209.  doi: 10.1016/j.progpolymsci.2011.08.002

    11. [11]

      Hu, R.; Leung, N. L.; Tang, B. Z. AIE macromolecules: Syntheses, structures and functionalities. Chem. Soc. Rev. 2014, 43, 4494-4562.  doi: 10.1039/C4CS00044G

    12. [12]

      Stuart, M. A. C.; Huck, W. T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101-113.  doi: 10.1038/nmat2614

    13. [13]

      Liu, F.; Urban, M. W., Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 2010, 35, 3-23.  doi: 10.1016/j.progpolymsci.2009.10.002

    14. [14]

      Lendlein, A.; Shastri, V. P. Stimuli-sensitive polymers. Adv. Mater. 2010, 22, 3344-3347.  doi: 10.1002/adma.201002520

    15. [15]

      De las Heras Alarcón, C.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34, 276-285.  doi: 10.1039/B406727D

    16. [16]

      Roth, P. J.; Lowe, A. B. Stimulus-responsive polymers. Polym. Chem. 2017, 8, 10-11.  doi: 10.1039/C6PY90169G

    17. [17]

      Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144-176.  doi: 10.1039/C6PY01872F

    18. [18]

      Wei, M.; Gao, Y.; Li, X.; Serpe, M. J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127-143.  doi: 10.1039/C6PY01585A

    19. [19]

      McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283-1292.  doi: 10.1021/cm304034s

    20. [20]

      Cui, Y.; Song, R.; Yu, J.; Liu, M.; Wang, Z.; Wu, C.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G. Dual-emitting MOF⊃ dye composite for ratiometric temperature sensing. Adv. Mater. 2015, 27, 1420-1425.  doi: 10.1002/adma.201404700

    21. [21]

      Zhang, Z.; Hadjichristidis, N. Temperature and pH-dual responsive AIE-active core crosslinked polyethylene-poly (methacrylic acid) multimiktoarm star copolymers. ACS Macro Lett. 2018, 7, 886-891.  doi: 10.1021/acsmacrolett.8b00329

    22. [22]

      Shea, K. J. Polyhomologation: The living polymerization of ylides. Chem. Eur. J. 2000, 6, 1113-1119.  doi: 10.1002/(SICI)1521-3765(20000403)6:7<1113::AID-CHEM1113>3.3.CO;2-M

    23. [23]

      Shea, K.; Walker, J.; Zhu, H.; Paz, M.; Greaves, J. Polyhomologation. A living polymethylene synthesis. J. Am. Chem. Soc. 1997, 119, 9049-9050.

    24. [24]

      Luo, J.; Shea, K. J. Polyhomologation. A living C1 polymerization. Acc. Chem. Res. 2010, 43, 1420-1433.

    25. [25]

      Wang, D.; Hadjichristidis, N. Terpolymers from borane-initiated copolymerization of triphenyl arsonium and sulfoxonium ylides: An unexpected light emission. Angewandte Chemie 2019, 131, 6361-6365.  doi: 10.1002/ange.v131.19

    26. [26]

      Jiang, Y.; Zhang, Z.; Wang, D.; Hadjichristidis, N. An efficient and general strategy toward the synthesis of polyethylene-based cyclic polymers. Macromolecules 2018, 51, 3193-3202.  doi: 10.1021/acs.macromol.8b00333

    27. [27]

      Xue, Y.; Lu, H. C.; Zhao, Q. L.; Huang, J.; Xu, S. G.; Cao, S. K.; Ma, Z. Polymethylene-b-poly(styrene-co-2,3,4,5,6-pentafluoro styrene) copolymers: Synthesis and fabrication of their porous films. Polym. Chem. 2013, 4, 307-312.  doi: 10.1039/C2PY20478A

    28. [28]

      He, Q.; Ren, J.; Ren, J.; Pang, K.; Ma, Z.; Zhu, X.; Song, R. Polymethylene-b-poly(acrylic acid) diblock copolymers: Aggregation and crystallization in the presence of CaCl2. Euro. Polym. J. 2017, 95, 174-185.  doi: 10.1016/j.eurpolymj.2017.08.003

    29. [29]

      Wang, H.; Xu, F.; Cui, K.; Zhang, H.; Huang, J.; Zhao, Q.; Jiang, T.; Ma, Z. Synthesis of polymethylene-b-poly(vinyl acetate) block copolymer via visible light induced radical polymerization and its application. RSC Adv. 2017, 7, 42484-42490.  doi: 10.1039/C7RA06908A

    30. [30]

      Xue, Y.; Zhang, S. S.; Cui, K.; Huang, J.; Zhao, Q. L.; Lan, P.; Cao, S. K.; Ma, Z. New polymethylene-based AB2 star copolymers synthesized via a combination of polyhomologation of ylides and atom transfer radical polymerization. RSC Adv. 2015, 5, 7090-7097.  doi: 10.1039/C4RA14504F

    31. [31]

      Wang, D.; Hadjichristidis, N., Allyl borates: A novel class of polyhomologation initiators. Chem. Commun. 2017, 53, 1196-1199.  doi: 10.1039/C6CC09047H

    32. [32]

      Zhang, H.; Banerjee, S.; Faust, R.; Hadjichristidis, N. Living cationic polymerization and polyhomologation: An ideal combination to synthesize functionalized polyethylene-polyisobutylene block copolymers. Polym. Chem. 2016, 7, 1217-1220.  doi: 10.1039/C5PY01892G

    33. [33]

      Zhang, Z.; Altaher, M.; Zhang, H.; Wang, D.; Hadjichristidis, N. Synthesis of well-defined polyethylene-based 3-miktoarm star copolymers and terpolymers. Macromolecules 2016, 49, 2630-2638.  doi: 10.1021/acs.macromol.6b00291

    34. [34]

      Zhang, Z.; Gnanou, Y.; Hadjichristidis, N. Well-defined 4-arm stars with hydroxy-terminated polyethylene, polyethylene-b-polycaprolactone and polyethylene-b-(polymethyl methacrylate) 2 arms. Polym. Chem. 2016, 7, 5507-5511.  doi: 10.1039/C6PY01090C

    35. [35]

      Zhang, Z.; Zhang, H.; Gnanou, Y.; Hadjichristidis, N. Polyhomologation based on in situ generated boron-thexyl-silaboracyclic initiating sites: A novel strategy towards the synthesis of polyethylene-based complex architectures. Chem. Commun. 2015, 51, 9936-9938.  doi: 10.1039/C5CC01579K

    36. [36]

      Zhang, H.; Gnanou, Y.; Hadjichristidis, N. Well-defined polyethylene molecular brushes by polyhomologation and ring opening metathesis polymerization. Polym. Chem. 2014, 5, 6431-6434.  doi: 10.1039/C4PY00815D

    37. [37]

      Wang, D.; Zhang, Z.; Hadjichristidis, N. C1 polymerization: A unique tool towards polyethylene-based complex macromolecular architectures. Polym. Chem. 2017, 8, 4062-4073.  doi: 10.1039/C7PY00581D

    38. [38]

      Jiang, Y.; Hadjichristidis, N., Tetraphenylethene-functionalized polyethylene-based polymers with aggregation-induced emission. Macromolecules 2019, 52,1955-1964.  doi: 10.1021/acs.macromol.9b00121

    39. [39]

      Corey, E.; Chaykovsky, M., Dimethyloxosulfonium methylide ((CH3)2SOCH2) and dimethylsulfonium methylide ((CH3)2SCH2). Formation and application to organic synthesis. J. Am. Chem. Soc. 1965, 87, 1353-1364.  doi: 10.1021/ja01084a034

    40. [40]

      Zhang, H.; Alkayal, N.; Gnanou, Y.; Hadjichristidis, N. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers. Chem. Commun. 2013, 49, 8952-8954.  doi: 10.1039/c3cc44928a

    41. [41]

      Guan, X.; Zhang, D.; Meng, L.; Zhang, Y.; Jia, T.; Jin, Q.; Wei, Q.; Lu, D.; Ma, H. Various tetraphenylethene-based aiegens with four functional polymer arms: Versatile synthetic approach and photophysical properties. Ind. Eng. Chem. Res. 2017, 56, 680-686.  doi: 10.1021/acs.iecr.6b03780

    42. [42]

      Chen, F.; Li, C.; Wang, X.; Liu, G.; Zhang, G. pH and ion-species sensitive fluorescence properties of star polyelectrolytes containing a triphenylene core. Soft Matter 2012, 8, 6364-6370.  doi: 10.1039/c2sm25524c

  • 加载中
    1. [1]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    2. [2]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    3. [3]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    4. [4]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    5. [5]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    6. [6]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    7. [7]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    8. [8]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    9. [9]

      Wen ZhongDan ZhengXukun LiaoYadi ZhouYan JiangTing GaoMing LiChengli Yang . Elaborate construction of pH-sensitive polymyxin B loaded nanoparticles for safe and effective treatment of carbapenem-resistant Klebsiella pneumoniae. Chinese Chemical Letters, 2025, 36(3): 110448-. doi: 10.1016/j.cclet.2024.110448

    10. [10]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    13. [13]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    14. [14]

      Hao-Fei NiJia-He LinGele TeriQiang-Qiang JiaPei-Zhi HuangHai-Feng LuChang-Feng WangZhi-Xu ZhangDa-Wei FuYi Zhang . B-site ion regulation strategy enables performance optimization and multifunctional integration of hybrid perovskite ferroelectrics. Chinese Chemical Letters, 2025, 36(3): 109690-. doi: 10.1016/j.cclet.2024.109690

    15. [15]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    16. [16]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    17. [17]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    18. [18]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    19. [19]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    20. [20]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

Metrics
  • PDF Downloads(0)
  • Abstract views(758)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return