Citation: Shi-Xuan Yang, Zi-Yu Fan, Feng-Yu Zhang, Si-Hao Li, Yi-Xian Wu. Functionalized Copolymers of Isobutylene with Vinyl Phenol: Synthesis, Characterization, and Property[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 919-929. doi: 10.1007/s10118-019-2329-6 shu

Functionalized Copolymers of Isobutylene with Vinyl Phenol: Synthesis, Characterization, and Property

  • Corresponding author: Yi-Xian Wu, wuyx@mail.buct.edu.cn
  • Received Date: 17 June 2019
    Revised Date: 1 January 2019
    Available Online: 24 July 2019

  • The random copolymers of isobutylene (IB) with polar comonomers of 4-acetoxystyrene (ACS) or 4-tert-butoxystyrene (TBO), P(IB-co-ACS) and P(IB-co-TBO), could be successfully synthesized via cationic copolymerization with FeCl3-based initiating system. The kinetics of the cationic copolymerization process was in situ investigated by inserting a diamond probe into the reaction system by ATR-FTIR spectroscopy. The chemical structure and incorporation content of polar comonomers in the copolymers were characterized by GPC with RI/UV dual detectors and 1H-NMR spectroscopy. The corresponding functionalized random copolymers of IB with vinyl phenol P(IB-co-POH) carrying phenolic hydroxyl side groups could be further prepared via the complete hydrolysis of acetoxyl side groups in P(IB-co-ACS) or tert-butoxyl side groups in P(IB-co-TBO) copolymers. The functionalized P(IB-co-POH) copolymers became hydrophilic with water contact angle (WCA) of ca. 80° for the self-assembly in hot water, compared to the hydrophobic polyisobutylene with WCA of ca. 110°. The functionalized P(IB-co-POH) copolymers also displayed an excellent self-healing property due to the interaction of intermolecular hydrogen bonding and formation of three dimentional supramolecular networks from phenolic hydroxyl side groups. Furthermore, P(IB-co-POH) copolymers also provided a good matrix for the homogeneous dispersion for silica nanoparticles due to the formation of hydrogen bonding between copolymer chains and silica nanoparticles.
  • 加载中
    1. [1]

      Kennedy, J. P. Designed rubbery biomaterials. Macromol. Symp. 2001, 175, 127-132.  doi: 10.1002/(ISSN)1521-3900

    2. [2]

      Serap, H. S.; Goy Teck, L.; Puskas, J. E. Synthesis of POSS-functionalized polyisobutylene via direct initiation. Macromol. Rapid Commun. 2010, 30, 2112-2115.

    3. [3]

      Puskas, J. E.; Michel, A. New epoxide initiators for the controlled synthesis of functionalized polyisobutylenes. Macromol. Symp. 2000, 161, 141-148.  doi: 10.1002/(ISSN)1521-3900

    4. [4]

      Wollyung, K. M.; Wesdemiotis, C.; Nagy, A.; Kennedy, J. P. Synthesis and mass spectrometry characterization of centrally and terminally amine‐functionalized polyisobutylenes. J. Polym. Sci., Part A: Polym. Chem. 2010, 43, 946-958.

    5. [5]

      Nugay, T.; Keszler, B. L.; Deodhar, T.; Nihan, N.; Kennedy, J. P. Low cost bifunctional initiators for bidirectional living cationic polymerization of olefins. I. Isobutylene. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3716-3724.  doi: 10.1002/pola.v55.22

    6. [6]

      Nugay, T.; Deodhar, T.; Nugay, N.; Kennedy, J. P. Low-cost bifunctional initiators for bidirectional living cationic polymerization of olefins. III. Centrally functionalized polyisobutylenes. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1140-1145.  doi: 10.1002/pola.v56.11

    7. [7]

      Bin, Y.; Storey, R. F. Chain-end functionalization of living polyisobutylene via an end-quenching comonomer that terminates by indanyl ring formation. Macromolecules. 2018, 51, 6552-6560.  doi: 10.1021/acs.macromol.8b01338

    8. [8]

      Albarran, A. A.; Silantyeva, E.; Seo, K. S.; Puskas, J. E. Synthesis of functionalized polyisobutylenes using the propylene epoxide/TiCl4 initiating system. Polym. Chem. 2014, 5, 4710-4714.  doi: 10.1039/C4PY00363B

    9. [9]

      Bergbreiter, D. E.; Li, J. Terminally functionalized polyisobutylene oligomers as soluble supports in catalysis. Chem. Commun. 2003, 10, 42-43.

    10. [10]

      Adekunle, O.; Herbst, F.; Hackethal, K.; Binder, W. H. Synthesis of nonsymmetric chain end functionalized polyisobutylenes. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 2931-2940.  doi: 10.1002/pola.v49.13

    11. [11]

      Bergbreiter, D. E.; Priyadarshani, N. Syntheses of terminally functionalized polyisobutylene derivatives using diazonium salts. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1772-1783.  doi: 10.1002/pola.24601

    12. [12]

      Tripathy, R.; Ojha, U.; Faust, R. Syntheses and characterization of polyisobutylene macromonomers with methacrylate, acrylate, glycidyl ether, or vinyl ether end-functionality. Macromolecules 2009, 42, 3958-3964.  doi: 10.1021/ma9004499

    13. [13]

      Storey, R. F.; Stokes, C. D.; Harrison, J. J. N-methylpyrrole-terminated polyisobutylene through end-quenching of quasiliving carbocationic polymerization. Macromolecules 2005, 38, 4618-4624.  doi: 10.1021/ma0474628

    14. [14]

      Malins, E. L.; Waterson, C.; Becer, C. R. Controlled synthesis of amphiphilic block copolymers based on poly(isobutylene) macromonomers. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 634-643.  doi: 10.1002/pola.v54.5

    15. [15]

      Bae, Y. C.; Faust, R. Addition reaction of living polyisobutylene to " double” diphenylethylenes. Synthesis of 1,1-diphenylethylene-functionalized polyisobutylene macromonomers. Macromolecules 2009, 31, 9379-9383.

    16. [16]

      Simison, K. L.; Stokes, C. D.; Harrison, J. J.; Storey, R. F. End-quenching of quasiliving carbocationic isobutylene polymerization with hindered bases: Quantitative formation of exo-olefin-terminated polyisobutylene. Macromolecules 2006, 39, 2481-2487.  doi: 10.1021/ma060039+

    17. [17]

      Jian, Z. B. Synthesis of functionalized polyolefins: Design from catalysts to polar monomers. Acta Polymerica Sinica (in Chinese) 2018, 11, 1359-1371.

    18. [18]

      Chen, M.; Chen, C. L. Polar and functionalized polyolefins: New catalysts, new modulation strategies and new materials. Acta Polymerica Sinica (in Chinese) 2018, 11, 1372-1384.

    19. [19]

      Hackethal, K.; DöHler, D.; Tanner, S.; Binder, W. H. Introducing polar monomers into polyisobutylene by living cationic polymerization: Structural and kinetic effects. Macromolecules 2010, 43, 1761-1770.  doi: 10.1021/ma9025114

    20. [20]

      Florian, H.; Diana, D. H.; Philipp, M.; Binder, W. H. Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 2013, 34, 203-220.  doi: 10.1002/marc.v34.3

    21. [21]

      Herbst, F.; Seiffert, S.; Binder, W. H. Dynamic supramolecular poly(isobutylene)s for self-healing materials. Polym. Chem. 2012, 3, 3084-3092.  doi: 10.1039/c2py20265d

    22. [22]

      Binder, W. H.; Kunz, M. J.; Ingolic, E. Supramolecular poly(ether ketone) polyisobutylene pseudo‐block copolymers. J. Polym. Sci., Part A: Polym. Chem. 2010, 42, 162-172.

    23. [23]

      Binder, W. H.; Kunz, M. J.; Kluger, C.; Hayn, G.; Saf, R. Synthesis and analysis of telechelic polyisobutylenes for hydrogen-bonded supramolecular pseudo-block copolymers. Macromolecules 2004, 37, 1749-1759.  doi: 10.1021/ma034924t

    24. [24]

      Hackethal, K.; Herbst, F.; Binder, W. H. Synthesis and clustering of supramolecular "graft" polymers. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 4494-4506.  doi: 10.1002/pola.v50.21

    25. [25]

      Hackethal, K.; Binder, W. H. Polyisobutylene based supramolecular networks via living carbocationic polymerization. Macromol. Symp. 2013, 323, 58-63.  doi: 10.1002/masy.v323.1

    26. [26]

      Binder, W. H.; Döhler, D.; Zare, P. Hyperbranched polyisobutylenes for self-healing polymers. Polym. Chem. 2013, 5, 992-1000.

    27. [27]

      Herbst, F.; Schroeter, K.; Gunkel, I.; Groeger, S.; Binder, W. H. Aggregation and chain dynamics in supramolecular polymers by dynamic rheology: Cluster formation and self-aggregation. Macromolecules 2010, 43, 10006-10016.  doi: 10.1021/ma101962y

    28. [28]

      Döhler, D.; Peterlik, H.; Binder, W. H. A dual crosslinked self-healing system: Supramolecular and covalent network formation of four-arm star polymers. Polymer 2015, 69, 264-273.  doi: 10.1016/j.polymer.2015.01.073

    29. [29]

      Bouchekif, H.; Som, A.; Sipos, L.; Faust, R. Living cationic sequential block copolymerization of isobutylene with 4-tert-butoxystyrene: Synthesis and characterization of poly(p-hydroxystyreneb-isobutylene-b-p-hydroxystyrene) triblock copolymers. J. Macromol. Sci., Part A: Pure Appl. Chem. 2007, 44, 359-366.  doi: 10.1080/10601320601187986

    30. [30]

      Sipos, L.; Som, A.; Faust, R.;Richard, R.; Schwarz, M; Ranade, S.; Boden, M.; Chan, K. Controlled delivery of paclitaxel from stent coatings using poly(hydroxystyrene-b-isobutylene-b-hydroxystyrene) and its acetylated derivative. Biomacromolecules 2005, 6, 2570-2582.  doi: 10.1021/bm050299j

    31. [31]

      Liu, Q.; Wu, Y. X.; Yan, P. F.; Zhang, Y.; Xu, R. W. Polyisobutylene with high exo-olefin content via β-H elimination in the cationic polymerization of isobutylene; H2O/FeCl3/dialkyl ether initiating system. Macromolecules 2011, 44, 1866-1875.  doi: 10.1021/ma1027017

    32. [32]

      Guo, A. R.; Yang, X. J.; Yan, P. F.; Wu, Y. X. Synthesis of highly reactive polyisobutylenes with exo-olefin terminals via controlled cationic polymerization with H2O/FeCl3/iPrOH initiating system in nonpolar hydrocarbon media. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4200-4212.  doi: 10.1002/pola.26834

    33. [33]

      Yan, P. F.; Guo, A. R.; Qiang, L.; Wu, Y. X. Living cationic polymerization of isobutylene coinitiated by FeCl3 in the presence of isopropanol. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3383-3392.  doi: 10.1002/pola.v50.16

    34. [34]

      Wu, Y. X.; Zhou, Q.; Du, J.; Wang, N. Controlled/Living Cationic Polymerization of Olefins: System, Process and Application. Acta Polymerica Sinica (inChinese) 2017, 1047-1057.  doi: 10.11777/j.issn1000-3304.2017.17045

    35. [35]

      Chen, X.; Jankova, K.; Kops, J.; Batsberg, W. Hydrolysis of 4-acetoxystyrene polymers prepared by atom transfer radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 627-633.  doi: 10.1002/(ISSN)1099-0518

    36. [36]

      Kuo, S. W.; Liu, W. P.; Chang, F. C. Effect of hydrolysis on the strength of hydrogen bonds and Tg of poly(vinylphenol-co-acetoxystyrene). Macromolecules 2003, 36, 5165-5173.  doi: 10.1021/ma0341824

    37. [37]

      Rahman, S. S. A.; Kawaguchi, D.; Matsushita, Y. Microphase-separated structures of poly(4-tert-butylstyrene-block-4-tert-butoxystyrene) upon gradual changes in segregation strength through hydrolysis reaction. Macromolecules 2011, 44, 2799-2807.  doi: 10.1021/ma102440a

    38. [38]

      Rahman, S. S. A.; Kawaguchi, D.; Matsushita, Y. Monomer sequence of partially hydrolyzed poly(4-butoxystyrene) and morphology of diblock copolymers composing this polymer sequence as one block. Polymer 2011, 52, 164-171.  doi: 10.1016/j.polymer.2010.11.010

    39. [39]

      Sutisna, B.; Mygiakis, E.; Musteata, V.; Peinemann, K. V.; Smilgies, D.; Hadjichristidis, N.; Nunes, S. Artificial membranes with selective nanochannels for protein transport. Polym. Chem. 2016, 7, 6189-6210.  doi: 10.1039/C6PY01401A

    40. [40]

      Feldman, K. E.; Kade, M. J.; Meijer, E. W.; Hawker, C. J.; Kramer, E. J. Model transient networks from strongly hydrogen-bonded polymers. Macromolecules 2011, 42, 9072-9081.

    41. [41]

      Chen, S.; Mahmood, N.; Beiner, M.; Binder, W. H. Self-healing materials from V- and H-shaped suparmolecular architectures. Angew. Chem. Int. Ed. 2015, 54, 10188-10192.  doi: 10.1002/anie.201504136

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    3. [3]

      Yan ChenXinnan WangYifan LinChun Liu . Shape/dimension-controllable organic heterostructures from one monomer pair. Chinese Chemical Letters, 2025, 36(3): 109903-. doi: 10.1016/j.cclet.2024.109903

    4. [4]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    5. [5]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    6. [6]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    7. [7]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    8. [8]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    9. [9]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    10. [10]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    11. [11]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    12. [12]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    13. [13]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    14. [14]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    15. [15]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    16. [16]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    17. [17]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    18. [18]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    19. [19]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    20. [20]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

Metrics
  • PDF Downloads(0)
  • Abstract views(798)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return