Citation: Jing Li, Kang-Da Wu, Huang Shan, Jing-Han Zhang, Ming Zhao, Guang-Bi Gong, Wen-Li Guo, Yi-Bo Wu. Synthesis and Properties of Hydroxytelechelic Polyisobutylenes by End Capping with tert-Butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 936-942. doi: 10.1007/s10118-019-2327-8 shu

Synthesis and Properties of Hydroxytelechelic Polyisobutylenes by End Capping with tert-Butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane

  • The low-activity cationic monomer tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane was synthesized by Grignard reaction and hydroxyl-protection reaction. Living polyisobutylene chains were initially synthesized by controlled cationic polymerization and then capped with tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane. The hydrolysis of these polyisobutylenes end capped with tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane gave rise to hydroxytelechelic polyisobutylene. NMR analysis confirmed that the hydrolysis was complete. Results also showed that a low polymerization temperature favored the participation of tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane in the end-capping reaction. Moreover, polyisobutylene-based polyurethane exhibited greater acid resistance than commercial polyurethane.
  • 加载中
    1. [1]

      Jerome, R.; Henrioulle-granville, M.; Boutevin, B.; Robin, J. J. Telechelic polymers: Synthesis characterization and applications. Prog. Polym. Sci. 1991, 16, 837-906.  doi: 10.1016/0079-6700(91)90012-A

    2. [2]

      Wu, Y. X.; Tan, Y. X.; Wu, G. Y. Kinetic investigation of the carbocationic polymerization of isobutylene with the H2O/TiCl4/ED initiating system. Macromolecules 2002, 35, 3801-3805.  doi: 10.1021/ma011664b

    3. [3]

      Vasilenko, I. V.; Frolov, A. N.; Kostjuk, S. V. Cationic polymerization of isobutylene using AlCl3OBu2 as a coinitiator: Synthesis of highly reactive polyisobutylene. Macromolecules 2010, 43, 5503-5507.  doi: 10.1021/ma1009275

    4. [4]

      Liu, Q.; Wu, Y. X.; Zhang, Y.; Yan, P. F.; Xu, R. W. A cost-effective process for highly reactive polyisobutylenes via cationic polymerization coinitiated by AlCl3. Polymer 2010, 51, 5960-5969.  doi: 10.1016/j.polymer.2010.10.012

    5. [5]

      Liu, Q.; Wu, Y. X.; Yan, P. F.; Xu, R. W. Polyisobutylene with high exo-olefin content via β-H elimination in the cationic polymerization of isobutylene with H2O/FeCl3/dialkyl ether initiating system.Macromolecules 2011, 44, 1866-1875.  doi: 10.1021/ma1027017

    6. [6]

      Kumar, R.; Dimitrov, P.; Bartelson, K. J.; Emert, J.; Faust, R. Polymerization of isobutylene by GaCl3 or FeCl3/ether complexes in nonpolar solvents. Macromolecules 2012, 45, 8598-8603.  doi: 10.1021/ma3017585

    7. [7]

      Dimitrov, P.; Emert, J.; Faust, R. Polymerization of isobutylene by AlCl3/ether complexes in nonpolar solvent. Macromolecules 2012, 45, 3318-3325.  doi: 10.1021/ma3003856

    8. [8]

      Dimitrov, P.; Emert, J.; Hua, J.; Keki, S.; Faust, R. Mechanism of isomerization in the cationic polymerization of isobutylene. Macromolecules 2015, 44, 1831-1840.

    9. [9]

      Kumar, R.; Emert, J.; Faust, R. The polymerization of isobutylene catalyzed by FeCl3i-Pr2O complex prepared in non-halogenated solvents. Polym. Bull. 2015, 72, 49-60.  doi: 10.1007/s00289-014-1258-3

    10. [10]

      Li, X. N.; Wu, Y. B.; Zhang, J. H.; Li, S. X.; Zhang, M.; Yang, D.; Wang, H.; Shang,Y. W.; Guo,W. L.; Yan, P. H. Synthesis of highly reactive polyisobutylenes via cationic polymerization in ionic liquids: characteristics and mechanism. Polym. Chem. 2019, DOI: 10.1039/C8PY01141A  doi: 10.1039/C8PY01141A

    11. [11]

      Iván, B.; Kennedy, J. P. Living carbocationic polymerization. XXX. One-pot synthesis of allyl-terminated linear and tri-arm star polyisobutylenes, and epoxy- and hydroxyl-telechelics therefrom. J. Polym. Sci., Part A: Polym. Chem. 1990, 28, 89-104.  doi: 10.1002/pola.1990.080280107

    12. [12]

      Deodhar, T. J.; Keszler, B. L.; Kennedy, J. P. Quantitative preparation of allyl telechelicpolyisobutylene under reflux conditions. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1784-1789.  doi: 10.1002/pola.28529

    13. [13]

      Yang, B.; Storey, R. F. Chain-end functionalization of living polyisobutylene via an end-quenching comonomer that terminates by indanyl ring formation. Macromolecules 2018, 51(17), 6552–6560  doi: 10.1021/acs.macromol.8b01338

    14. [14]

      Kennedy, J. P.; Smith, R. A. New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). II. Synthesis and characterization of α,ω-di(tert-chloro)polyisobutylenes. J. Polym. Sci., Part A: Polym. Chem. 1980, 18, 1523-1537.  doi: 10.1002/pol.1980.170180509

    15. [15]

      Kwon, Y.; Kennedy, J. P. Polymerizability, copolymerizability, and properties of cyanoacrylate-telechelicpolyisobutylenes I: Three-arm star cyanoacrylate-telechelicpolyisobutylene. Polym. Adv. Technol. 2007, 18, 800-807.  doi: 10.1002/pat.v18:10

    16. [16]

      Ojha, U.; Rajkhowa, R.; Agnihotra, S. R.; Faust, R. A new general methodology for the syntheses of end-functional polyisobutylenes by nucleophilic substitution reactions. Macromolecules 2008, 41, 3832-3841.  doi: 10.1021/ma7027209

    17. [17]

      Albarran, A. A.; Silantyeva, E.; Seo, K. S.; Puskas, J. E. Synthesis of functionalized polyisobutylenes using the propylene epoxide/TiCl4 initiating system. Polym. Chem. 2014, 5, 4710-4714.  doi: 10.1039/C4PY00363B

    18. [18]

      Iván, B.; Kennedy, J. P.; Chang, V. S. C. New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). VII. Synthesis and characterization of α,ω-di(hydroxy)polyisobutylene. J. Polym. Sci., Part A: Polym. Chem. 1980, 18, 3177-3191.  doi: 10.1002/pol.1980.170181104

    19. [19]

      Magenau, A. J. D.; Chan, J. W.; Hoyle, C. E.; Storey, R. F. Facile polyisobutylene functionalization via thiol-ene click chemistry. Polym. Chem. 2010, 1, 831-833.  doi: 10.1039/c0py00094a

    20. [20]

      Puskas, J. E.; Brister, L. B.; Michel, A. J.; Lanzendorfer, M. G.; Jamieson, D.; Pattern, W. G. Novel substituted epoxide initiators for the carbocationic polymerization of isobutylene. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 444-452.  doi: 10.1002/(ISSN)1099-0518

    21. [21]

      Puskas, J. E.; Chen, Y.; Tomkins, M. Investigation of the effect of epoxide structure on the initiation efficiency in isobutylene polymerizations initiated by epoxide/TiCl4 systems. Eur. Polym. J. 2003, 39(11), 2147-2153.  doi: 10.1016/S0014-3057(03)00149-6

    22. [22]

      Chen, C. J.; Bozzelli, J. W. Analysis of tertiary butyl radical + O2, isobutene + HO2, isobutene + OH, and isobutene-OH adducts + O2: A detailed tertiary butyl oxidation mechanism. J. Phys. Chem. A 1999, 103, 9731-9769.  doi: doi.org/10.1021/jp991227n

    23. [23]

      Castano, M.; Beckera, M. L.; Puskas, J. E. New method for the synthesis of fully aliphatic telechelic α,ω-dihydroxy-polyisobutylene. Polym. Chem. 2014, 5, 5436-5442.  doi: 10.1039/C4PY00569D

    24. [24]

      Puskas, J. E.; Chen, Y. H.; Yaser, D.; Donna, P. Polyisobutylene-based biomaterials. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 3091-3109.  doi: 10.1002/(ISSN)1099-0518

    25. [25]

      Pinchuk, L.; Wilson, G. J.; Barry, J. J.; Schoephoerster, R. T.; Parel, J. M.; Kennedy, J. P. Medical applications of poly(styrene-block-isobutylene-block-styrene) ("SIBS"). Biomaterials 2008, 29, 448-460.  doi: 10.1016/j.biomaterials.2007.09.041

    26. [26]

      Puskas, J. E.; Muñoz-Robledo, L. G.; Hoerr, R. A.; Foley, J.; Schmidt, S. P.; Evancho-Chapman, M.; Dong, J. P.; Frethem, C.; Haugstad, G. Drug-eluting stent coatings. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2010, 1, 451-462.

    27. [27]

      Kennedy J P. From thermoplastic elastomers to designed biomaterials. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 2951–2963.

    28. [28]

      Kennedy, J. P.; Richard G. C. Polyisobutylene-toughened poly(methyl methacrylate). 1. Synthesis, characterization, and tensile properties of PMMA-l-PIB networks. Macromolecules 1993, 26, 567-571.  doi: 10.1021/ma00056a002

    29. [29]

      Speckhard, T. A.; Gibson, P. E.; Cooper, S. L.; Chang, V. S. C.; Kennedy, J. P. Properties of polyisobutylene polyurethane block copolymers: 2. Macroglycols produced by the ‘inifer’ technique. Polymer 1985, 26, 55-69.  doi: 10.1016/0032-3861(85)90057-6

    30. [30]

      Mitzner, E.; Goering, H.; Becker, R.; Kennedy, J. P. Modification of segmented poly(ether urethanes) by incorporation of poly(isobutylene)glycol. J. Macromol. Sci., Part A 1997, 34, 165-178.  doi: 10.1080/10601329708014944

    31. [31]

      itzner, E.; Groth, T. Modification of poly(ether urethane)elastomers by incorporation of poly(isobutylene)glycol. Relation between polymer properties and thrombogenicity. J. Biomater. Sci. Polymer Ed. 1996, 7, 1105-1118.  doi: 10.1163/156856296X00598

    32. [32]

      Jewrajka, S. K.; Kang, J.; Erdodi, G.; Kennedy, J. P.; Yilgor, E.; Yilgor, I. Polyisobutylene-based polyurethanes. II. Polyureas containing mixed PIB/PTMO soft segments. J. Polym. Sci., Part A: Polym. Chem. 2010, 47, 2787-2797.

    33. [33]

      Erdodi, G.; Kang, J.; Kennedy, J. P.; Yilgor, E.; Yilgor, I.Polyisobutylene-based polyurethanes. III. Polyurethanes containing PIB/PTMO soft co-segments. J. Polym. Sci., Part A: Polym. Chem. 2010, 47, 5278-5290.

    34. [34]

      Kang, J.; Erdodi, G.; Kennedy, J. P. Polyisobutylene-based polyurethanes with unprecedented properties and how they came about. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3891-3904.  doi: 10.1002/pola.24839

    35. [35]

      Kim, M. S.; Faust, R. Synthesis of poly(ɛ-caprolactone-b-isobutylene) diblock copolymer and poly(ɛ-caprolactone-b-isobutylene-b-ɛ-caprolactone) triblock copolymer. Polym. Bull. 2002, 48,127-134.  doi: 10.1007/s00289-002-0019-x

    36. [36]

      Storey, R. F.; Brister, L. B.; Sherman J. W. Structural characterization of poly(ɛ-caprolactone) and poly(ɛ-caprolactone-b-isobutylene-b-ɛ-caprolactone) block copolymers by MALDI-TOF mass spectrometry. J. Macromol. Sci. Part A 2001, 38, 107-122.  doi: 10.1081/MA-100103337

    37. [37]

      Sipos, L.; Zsuga, M.; Deák, G. Synthesis of poly(L-lactide)-block-polyisobutylene-block-poly(l-lactide), a new biodegradable thermoplastic elastomer. Macromol. Rapid. Commun. 1995, 16, 935-940.  doi: 10.1002/marc.1995.030161209

    38. [38]

      Craig, J. C.; Everhart, E. T. A convenient procedure for isolation of alcohols after cleavage of protective groups with tetra-n-butylammonium fluoride. Synth. Commun. 2010, 20, 2147-2150.

    39. [39]

      Wu, Y. B.; Ren, P.; Guo, W. L.; Li, S. X.; Yang, X. P.; Shang, Y. W. Living cationic sequential block copolymerization: Synthesis and characterization of poly(4-(2-hydroxyethyl)styrene-b-isobutylene-b-4-(2-hydroxyethyl)styrene) triblock copolymers. Polym. J. 2010, 42, 268-272.  doi: 10.1038/pj.2009.339

    40. [40]

      Ren, P.; Wu, Y. B.; Guo, W. L.; Li, S. X.; Chen, Y. ABA triblock copolymers with pendant hydroxyl groups prepared by controlled cationic polymerization and their use as delivery carrier for paclitaxe. Chinese J. Polym. Sci. 2013, 31, 285-293.  doi: 10.1007/s10118-013-1216-9

    41. [41]

      Wu, Y. B.; Li, K.; Xiang, D.; Zhang, M.; Yang, D.; Zhang, J. H.; Mao, J.; Wang, H.; Guo, W. L. Surface immobilization of heparin on functional polyisobutylene-based thermoplastic elastomer as a potential artificial vascular graft. Appl. Surf. Sci. 2018, 445, 8-15.  doi: 10.1016/j.apsusc.2018.03.048

    42. [42]

      Wu, Y. B.; Guo, W. L.; Li, S. X.; G, H. Q. Synthesis and characterization of poly {4-[2-(tert-butyldimethylsiloxy)ethyl]styrene} and its hydrolysis derivative. Chinese J. Polym. Sci. 2009, 27, 399-405.  doi: 10.1142/S0256767909004060

  • 加载中
    1. [1]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    2. [2]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    3. [3]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    4. [4]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    5. [5]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    6. [6]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    7. [7]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    8. [8]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    9. [9]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    10. [10]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Meihui LiuXinyuan ZhouXiao LiZhenjie XueTie Wang . Pushing the frontiers: Chip-based detection based on micro- and nano-structures. Chinese Chemical Letters, 2024, 35(4): 108875-. doi: 10.1016/j.cclet.2023.108875

    13. [13]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    14. [14]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    15. [15]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    16. [16]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    17. [17]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    18. [18]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    19. [19]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    20. [20]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

Metrics
  • PDF Downloads(0)
  • Abstract views(888)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return