Citation: Yi Sun, Yong-Yuan Ren, Qi Li, Rong-Wei Shi, Yin Hu, Jiang-Na Guo, Zhe Sun, Feng Yan. Conductive, Stretchable, and Self-healing Ionic Gel Based on Dynamic Covalent Bonds and Electrostatic Interaction[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1053-1059. doi: 10.1007/s10118-019-2325-x shu

Conductive, Stretchable, and Self-healing Ionic Gel Based on Dynamic Covalent Bonds and Electrostatic Interaction

  • Corresponding author: Feng Yan, fyan@suda.edu.cn
  • † These authors contributed equally to this work
  • Received Date: 28 May 2019
    Revised Date: 25 June 2019
    Accepted Date: 26 June 2019
    Available Online: 12 September 2019

  • Integrating multiple functions into one gel that can be widely applied to electronic devices as well as chemical and biomedical engineering remains a big challenge. Here, a multifunctional ionic liquid/dynamic covalent bonds (ionic/DCB) type gel was designed and synthesized via one-pot polymerization. With the assistance of electrostatic interaction provided by the imidazolium cations of IL and the reversible DCB of boronic ester, as-prepared ionic/DCB gel showed good stretchable properties and high ionic conductivity at ambient conditions. In addition, the electrostatic interaction between imidazolium cations and sulfonate anions and the reversible DCB led to enhanced chain mobility and thereby excellent self-healing properties. Particularly, sulfonate anions in ionic/DCB gel could alleviate the migration of electronegative polysulfide and promote the transportation of electropositive lithium ion in lithium-sulfur battery system. Therefore, this work provides a new insight to promote the current research on self-healing gels, hopefully expanding their applications in electronic devices.
  • 加载中
    1. [1]

      Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977.  doi: 10.1038/nature06669

    2. [2]

      By, E.; Ghosh, S. K. Self-healing materials. Adv. Mater. 2010, 22, 5424.  doi: 10.1002/adma.201003036

    3. [3]

      Brown, E. N.; White, S. R.; Sottos, N. R. Microcapsule induced toughening in a self-healing polymer composite. J. Mater. Sci. 2004, 39, 1703.  doi: 10.1023/B:JMSC.0000016173.73733.dc

    4. [4]

      Yang, L.; Lu, L.; Zhang, C. Highly stretchable and self-healing hydrogels based on poly(acrylic acid) and functional POSS. Chinese J. Polym. Sci. 2016, 34, 185.  doi: 10.1007/s10118-016-1744-1

    5. [5]

      Wathier, M.; Grinstaff, M. W. Synthesis and creep-recovery behavior of a neat viscoelastic polymeric network formed through electrostatic interactions. Macromolecules 2010, 43, 9529.  doi: 10.1021/ma101506p

    6. [6]

      Zhang, Y.; Liang, L.; Chen, Y.; Chen, X. M.; Liu, Y. Construction and efficient dye adsorption of supramolecular hydrogels by cyclodextrin of pseudorotaxane and clay. Soft Matter 2018, 15, 73.  doi: 10.1039/c8sm02203h

    7. [7]

      Rahman, M. A.; Penco, M.; Peroni, I.; Ramorino, G.; Grande, A. M.; Di Landro, L. Self-repairing systems based on ionomers and epoxidized natural rubber blends. ACS Appl. Mater. Interfaces 2011, 3, 4865.  doi: 10.1021/am201417h

    8. [8]

      Luan, Y.; Zhang, X.; Jiang, S.; Chen, J.; Lyu, Y. Self-healing supramolecular polymer composites by hydrogen bonding interactions between hyperbranched polymer and graphene oxide. Chinese J. Polym. Sci. 2018, 36, 584.  doi: 10.1007/s10118-018-2025-y

    9. [9]

      Liu, C.; Zhang, A.; Ye, L.; Feng, Z. Self-healing biodegradable poly(urea-urethane) elastomers based on hydrogen bonding interactions. Chinese J. Polym. Sci. 2013, 31, 251.  doi: 10.1007/s10118-013-1211-1

    10. [10]

      Zhang, Q.; Zhu, X.; Li, C.-H.; Cai, Y.; Jia, X.; Bao, Z. Disassociation and reformation under strain in polymer with dynamic metal-ligand coordination cross-linking. Macromolecules 2019, 52, 660.  doi: 10.1021/acs.macromol.8b02414

    11. [11]

      Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Optically healable supramolecular polymers. Nature 2011, 472, 334.  doi: 10.1038/nature09963

    12. [12]

      Yang, Q.; Wang, P.; Zhao, C.; Wang, W.; Yang, J.; Liu, Q. Light-switchable self-healing hydrogel based on host-guest macro-crosslinking. Macromol. Rapid Commun. 2017, 38, 1600741.  doi: 10.1002/marc.v38.6

    13. [13]

      Nakahata, M.; Takashima, Y.; Harada, A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host-guest interaction. Macromol. Rapid Commun. 2016, 37, 86.  doi: 10.1002/marc.v37.1

    14. [14]

      Guan, Y.; Zhang, Y. Boronic acid-containing hydrogels: synthesis and their applications. Chem. Soc. Rev. 2013, 42, 8106.  doi: 10.1039/c3cs60152h

    15. [15]

      Cromwell, O. R.; Chung, J.; Guan, Z. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 2015, 137, 6492.  doi: 10.1021/jacs.5b03551

    16. [16]

      Yang, W. J.; Tao, X.; Zhao, T.; Weng, L.; Kang, E. T.; Wang, L. Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction. Polym. Chem. 2015, 6, 7027.  doi: 10.1039/C5PY00936G

    17. [17]

      Oku, T.; Furusho, Y.; Takata, T. A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew. Chem. Int. Ed. 2004, 43, 966.  doi: 10.1002/(ISSN)1521-3773

    18. [18]

      Wang, L.; Deng, F.; Wang, W.; Li, A.; Lu, C.; Chen, H.; Wu, G.; Nan, K.; Li, L. Construction of injectable self-healinng macroporous hydrogels via a template-free method for tissue engineering and drug delivery. ACS Appl. Mater. Interfaces 2018, 10, 36721.  doi: 10.1021/acsami.8b13077

    19. [19]

      Kang, J.; Son, D.; Wang, G. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B.; Bao, Z. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 30, 1706846.  doi: 10.1002/adma.v30.13

    20. [20]

      Guo, Y.; Zheng, K.; Wan, P. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 2018, 14, 1704497.  doi: 10.1002/smll.201704497

    21. [21]

      Zuo, X.; Ma, X.; Wu, J.; Deng, X.; Xiao, X.; Liu, J.; Nan, J. Self-supporting ethyl cellulose/poly(vinylidene fluoride) blended gel polymer electrolyte for 5 V high-voltage lithium-ion batteries. Electrochim. Acta 2018, 271, 582.  doi: 10.1016/j.electacta.2018.03.195

    22. [22]

      He, Y.; Liao, S.; Jia, H.; Cao, Y.; Wang, Z.; Wang, Y. A self-healing electronic sensor based on thermal-sensitive fluids. Adv. Mater. 2015, 27, 4622.  doi: 10.1002/adma.v27.31

    23. [23]

      Shao, C.; Chang, H.; Wang, M.; Xu, F.; Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 2017, 9, 28305.  doi: 10.1021/acsami.7b09614

    24. [24]

      Pu, W.; Jiang, F.; Chen, P.; Wei, B. A POSS based hydrogel with mechanical robustness, cohesiveness and a rapid self-healing ability by electrostatic interaction. Soft Matter 2017, 13, 5645.  doi: 10.1039/C7SM01492A

    25. [25]

      Chen, W. P.; Hao, D. Z.; Hao, W. J.; Guo, X. L.; Jiang, L. Hydrogel with ultrafast self-healing property both in air and underwater. ACS Appl. Mater. Interfaces 2018, 10, 1258.  doi: 10.1021/acsami.7b17118

    26. [26]

      Xu, D.; Guo, J.; Yan, F. Porous ionic polymers: design, synthesis, and applications. Prog. Polym. Sci. 2018, 79, 121.  doi: 10.1016/j.progpolymsci.2017.11.005

    27. [27]

      Zhao, Q.; Zhang, P.; Antonietti, M.; Yuan, J. Poly(ionic liquid) complex with spontaneous micro-/mesoporosity: template-free synthesis and application as catalyst support. J. Am. Chem. Soc. 2012, 134, 11852.  doi: 10.1021/ja303552p

    28. [28]

      Qian, W.; Texter, J.; Yan, F. Frontiers in poly(ionic liquid)s: syntheses and applications. Chem. Soc. Rev. 2017, 46, 1124.  doi: 10.1039/C6CS00620E

    29. [29]

      Ren, Y.; Zhang, J.; Chen, F.; Yan, F. Porous poly(ionic liquid) membranes as efficient and recyclable absorbents for heavy metal ions. Macromol. Rapid Commun. 2017, 38, 1700151.  doi: 10.1002/marc.v38.14

    30. [30]

      Guo, P.; Su, A.; Wei, Y.; Liu, X.; Li, Y.; Guo, F.; Li, J.; Hu, Z.; Sun, J. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 19413.  doi: 10.1021/acsami.9b02182

    31. [31]

      Guo, P.; Zhang, H.; Liu, X.; Sun, J. Counteranion-mediated intrinsic healing of poly(ionic liquid) copolymers. ACS Appl. Mater. Interfaces 2018, 10, 2105.  doi: 10.1021/acsami.7b16880

    32. [32]

      Suckow, M.; Mordvinkin, A.; Roy, M.; Singha, N. K.; Heinrich, G.; Voit, B.; Saalwächter, K.; Böhme, F. Tuning the properties and self-healing behavior of ionically modified poly(isobutylene-co-isoprene) rubber. Macromolecules 2017, 51, 468.  doi: 10.1021/acs.macromol.7b02287

    33. [33]

      Cui, J.; Nie, F. M.; Yang, J. X.; Pan, L.; Ma, Z.; Li, Y. S. Novel imidazolium-based poly(ionic liquid)s with different counterions for self-healing. J. Mater. Chem. A 2017, 5, 25220.  doi: 10.1039/C7TA06793C

    34. [34]

      Xia, Y.; Liang, Y. F.; Xie, D.; Wang, X. L.; Zhang, S. Z.; Xia, X. H.; Gu, C. D.; Tu, J. P. A poly(vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chem. Eng. J. 2019, 358, 1047.  doi: 10.1016/j.cej.2018.10.092

    35. [35]

      Han, D.-D.; Liu, S.; Liu, Y.-T.; Zhang, Z.; Li, G. R.; Gao, X. P. Lithiophilic gel polymer electrolyte to stabilizze the lithium anode for a quasi-solid-state lithium-sulfur battery. J. Mater. Chem. A 2018, 6, 18627.  doi: 10.1039/C8TA07685E

    36. [36]

      Deng, Z.; Guo, Y.; Zhao, X.; Ma, P. X.; Guo, B. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions. Chem. Mater. 2018, 30, 1729.  doi: 10.1021/acs.chemmater.8b00008

    37. [37]

      Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.; Gumenna, M. A.; Fomenko, A. A.; Bliznyuk, V. N.; Trachevsky, V. V.; Davydenko, V. V.; Tsukruk, V. V. Protic and aprotic anionic oligomeric ionic liquids. Polymer 2014, 55, 3349.  doi: 10.1016/j.polymer.2014.04.020

    38. [38]

      Guo, R.; Su, Q.; Zhang, J.; Dong, A.; Lin, C.; Zhang, J. Facile access to multi-sensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages. Biomacromolecules 2017, 18, 1356.  doi: 10.1021/acs.biomac.7b00089

    39. [39]

      Khan, A.; Jain, R. K.; Banerjee, P.; Ghosh, B.; Inamuddin; Asiri, A. M. Development, characterization and electromechanical actuation behavior of ionic polymer metal composite actuator based on sulfonated poly(1, 4-phenylene ether-ether-sulfone)/carbon nanotubes. Sci. Rep. 2018, 8, 9909.  doi: 10.1038/s41598-018-28399-6

    40. [40]

      Cash, J. J.; Kubo, T.; Bapat, A. P.; Sumerlin, B. S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 2015, 48, 2098.  doi: 10.1021/acs.macromol.5b00210

    41. [41]

      Bapat, A. P.; Roy, D.; Ray, J. G.; Savin, D. A.; Sumerlin, B. S. Dynamic-covalent macromolecular stars with boronic ester linkages. J. Am. Chem. Soc. 2011, 133, 19832.  doi: 10.1021/ja207005z

    42. [42]

      Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 2017, 29, 1605099.  doi: 10.1002/adma.201605099

  • 加载中
    1. [1]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    2. [2]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    3. [3]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    4. [4]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    5. [5]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    6. [6]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    7. [7]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    8. [8]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    9. [9]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    10. [10]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    11. [11]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    12. [12]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    13. [13]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    14. [14]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    15. [15]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    16. [16]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    17. [17]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    18. [18]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    19. [19]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    20. [20]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

Metrics
  • PDF Downloads(0)
  • Abstract views(658)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return