Citation: Xu Yu, Xin-Zheng Jin, Ting Huang, Nan Zhang, Xiao-Yu Li, Yong Wang. Poly(methyl methacrylate)-induced Microstructure and Hydrolysis Behavior Changes of Poly(L-lactic acid)/Carbon Nanotubes Composites[J]. Chinese Journal of Polymer Science, ;2020, 38(2): 195-204. doi: 10.1007/s10118-019-2323-z shu

Poly(methyl methacrylate)-induced Microstructure and Hydrolysis Behavior Changes of Poly(L-lactic acid)/Carbon Nanotubes Composites

  • Poly(L-lactic acid) (PLLA)-based composites exhibit wide applications in many fields. However, most of hydrophilic fillers usually accelerate the hydrolytic degradation of PLLA, which is unfavorable for the prolonging of the service life of the articles. In this work, a small quantity of poly(methyl methacrylate) (PMMA) (2 wt%−10 wt%) was incorporated into the PLLA/carbon nanotubes (CNTs) composites. The effects of PMMA content on the dispersion of CNTs as well as the microstructure and hydrolytic degradation behaviors of the composites were systematically investigated. The results showed that PMMA promoted the dispersion of CNTs in the composites. Amorphous PLLA was obtained in all the composites. Largely enhanced hydrolytic degradation resistance was achieved by incorporating PMMA, especially at relatively high PMMA content. Incorporating 10 wt% PMMA led to a dramatic decrease in the hydrolytic degradation rate from 0.19 %/h of the PLLA/CNT composite sample to 0.059 %/h of the PLLA/PMMA-10/CNT composite sample. The microstructure evolution of the composites was also detected, and the results showed that no crystallization occurred in the PLLA matrix. Further results based on the interfacial tension calculation showed that the enhanced hydrolytic degradation resistance of the PLLA matrix was mainly attributed to the relatively strong interfacial affinity between PMMA and CNTs, which prevented the occurrence of hydrolytic degradation at the interface between PLLA and CNTs. This work provides an alternative method for tailoring the hydrolytic degradation ability of the PLLA-based composites.
  • 加载中
    1. [1]

      Jia, L.; Zhang, W. C.; Tong, B.; Yang, R. J. Crystallization, mechanical and flame-retardant properties of poly(lactic acid) composites with DOPO and DOPO-POSS. Chinese J. Polym. Sci. 2018, 36, 871−879.  doi: 10.1007/s10118-018-2098-7

    2. [2]

      Karamanlioglu, M.; Preziosi, R.; Robson, G. D. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polym. Degrad. Stab. 2017, 137, 122−130.  doi: 10.1016/j.polymdegradstab.2017.01.009

    3. [3]

      Girdthep, S.; Sankong, W.; Pongmalee, A.; Saelee, T.; Punyodom, W.; Meepowpan, P.; Worajittiphon, P. Enhanced crystallization, thermal properties, and hydrolysis resistance of poly(L-lactic acid) and its stereocomplex by incorporation of graphene nanoplatelets. Polym. Test. 2017, 61, 229−239.  doi: 10.1016/j.polymertesting.2017.05.009

    4. [4]

      Holcapkova, P.; Stloukal, P.; Kucharczyk, P.; Omastova, M.; Kovalcik, A. Anti-hydrolysis effect of aromatic carbodiimide in poly(lactic acid) wood flour composites. Composites Part A 2017, 103, 283−291.  doi: 10.1016/j.compositesa.2017.10.003

    5. [5]

      Stloukal, P.; Jandikova, G.; Koutny, M.; Sedlařík, V. Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polym. Test. 2016, 54, 19−28.  doi: 10.1016/j.polymertesting.2016.06.007

    6. [6]

      Jandíková, G.; Stoplova, P.; Di Martino, A.; Stloukal, P.; Kucharczyk, P.; Machovsky, M.; Sedlarik, V. Effect of a hybrid zinc stearate-silver system on the properties of polylactide and its abiotic and the biotic degradation and antimicrobial activity thereof. Chinese J. Polym. Sci. 2018, 36, 925−933.  doi: 10.1007/s10118-018-2120-0

    7. [7]

      Tsuji, H.; Nakahara, K. Poly(L-lactide). IX. Hydrolysis in acid media. J. Appl. Polym. Sci. 2002, 86, 186−194.

    8. [8]

      Tsuji, H.; Ikada, Y. Properties and morphology of poly(L-lactide). II. Hydrolysis in alkaline solution. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 59−66.  doi: 10.1002/(ISSN)1099-0518

    9. [9]

      Tsuji, H.; Ikarashi, K. In vitro hydrolysis of poly(L-lactide) crystalline residues as extended-chain crystallites. Polym. Degrad. Stab. 2004, 85, 647−656.  doi: 10.1016/j.polymdegradstab.2004.03.004

    10. [10]

      Xu, L.; Crawford, K.; Gorman, C. B. Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules 2011, 44, 4777−4782.  doi: 10.1021/ma2000948

    11. [11]

      Chen, H. M.; Feng, C. X.; Zhang, W. B.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y. Hydrolytic degradation behavior of poly(L-lactide)/carbon nanotubes nanocomposites. Polym. Degrad. Stab. 2013, 98, 198−208.  doi: 10.1016/j.polymdegradstab.2012.10.009

    12. [12]

      Chen, H. M.; Wang, Y. P.; Chen, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Hydrolytic degradation behavior of poly(L-lactide)/SiO2 composites. Polym. Degrad. Stab. 2013, 98, 2672−2679.  doi: 10.1016/j.polymdegradstab.2013.09.033

    13. [13]

      Chen, H. M.; Shen, Y.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z. W. Molecular ordering and α′-form formation of poly(L-lactide) during the hydrolytic degradation. Polymer 2013, 54, 6644−6653.  doi: 10.1016/j.polymer.2013.09.059

    14. [14]

      Iñiguez-Franco, F.; Auras, R.; Burgess, G.; Holmes, D.; Fang, X.; Rubino, M.; Soto-Valdez, H. Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer 2016, 99, 315−323.  doi: 10.1016/j.polymer.2016.07.018

    15. [15]

      Wang, Y. P.; Xiao, Y. J.; Duan, J.; Yang, J. H.; Wang, Y.; Zhang, C. L. Accelerated hydrolytic degradation of poly(lactic acid) achieved by adding poly(butylene succinate). Polym. Bull. 2015, 73, 1067−1083.

    16. [16]

      Oyama, H. T.; Tanishima, D.; Ogawa, R. Biologically safe poly(L-lactic acid) blends with tunable degradation rate: microstructure, degradation mechanism, and mechanical properties. Biomacromolecules 2017, 18, 1281−1292.  doi: 10.1021/acs.biomac.7b00016

    17. [17]

      Huang, Y.; Chen, F.; Pan, Y.; Chen, C.; Jiang, L.; Dan, Y. Effect of hydrophobic fluoropolymer and crystallinity on the hydrolytic degradation of poly(lactic acid). Eur. Polym. J. 2017, 97, 308−318.  doi: 10.1016/j.eurpolymj.2017.09.044

    18. [18]

      Ma, P. M.; Xu, P. W.; Zhai, Y. H.; Dong, W. F.; Zhang, Y.; Chen, M. Q. Biobased poly(lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates: morphology evolution, superior properties, and partial degradability. ACS Sustain. Chem. Eng. 2015, 3, 2211−2219.  doi: 10.1021/acssuschemeng.5b00462

    19. [19]

      Andersson, S. R.; Hakkarainen, M.; Inkinen, S.; Sodergard, A.; Albertsson, A. C. Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromolecules 2012, 13, 1212−1222.  doi: 10.1021/bm300196h

    20. [20]

      Arias, V.; Hoglund, A.; Odelius, K.; Albertsson, A. C. Tuning the degradation profiles of poly(L-lactide)-based materials through miscibility. Biomacromolecules 2014, 15, 391−402.  doi: 10.1021/bm401667b

    21. [21]

      Jašo, V.; Glenn, G.; Klamczynski, A.; Petrović, Z. S. Biodegradability study of polylactic acid/thermoplastic polyurethane blends. Polym. Test. 2015, 47, 1−3.  doi: 10.1016/j.polymertesting.2015.07.011

    22. [22]

      Wang, Y. P.; Wei, X.; Duan, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol). Chinese J. Polym. Sci. 2017, 35, 386−399.  doi: 10.1007/s10118-017-1904-y

    23. [23]

      Chen, H.; Chen, J.; Chen, J.; Yang, J.; Huang, T.; Zhang, N.; Wang, Y. Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(L-lactide). Polym. Degrad. Stab. 2012, 97, 2273−2283.  doi: 10.1016/j.polymdegradstab.2012.07.037

    24. [24]

      Elsawy, M. A.; Kim, K. H.; Park, J. W.; Deep, A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sust. Energ. Rev. 2017, 79, 1346−1352.  doi: 10.1016/j.rser.2017.05.143

    25. [25]

      Reddy, N.; Nama, D.; Yang, Y. Poly(lactic acid)/polypropylene polyblend fibers for better resistance to degradation. Polym. Degrad. Stab. 2018, 93, 233−241.

    26. [26]

      Yan, S.; Yin, J.; Yang, Y.; Dai, Z.; Ma, J.; Chen, X. Surface-grafted silica linked with L-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(L-lactide). Polymer 2007, 48, 1688−1694.  doi: 10.1016/j.polymer.2007.01.037

    27. [27]

      Luo, Y. B.; Wang, X. L.; Wang, Y. Z. Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym. Degrad. Stab. 2012, 97, 721−728.  doi: 10.1016/j.polymdegradstab.2012.02.011

    28. [28]

      Duan, J.; Xie, Y. N.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Zhang, J. H. Graphene oxide induced hydrolytic degradation behavior changes of poly(L-lactide) in different mediums. Polym. Test. 2016, 56, 220−228.  doi: 10.1016/j.polymertesting.2016.10.015

    29. [29]

      Shirahase, T.; Komatsu, Y.; Tominaga, Y.; Asai, S.; Sumita, M. Miscibility and hydrolytic degradation in alkaline solution of poly(L-lactide) and poly(methyl methacrylate) blends. Polymer 2006, 47, 4839−4844.  doi: 10.1016/j.polymer.2006.04.012

    30. [30]

      Hao, X.; Kaschta, J.; Pan, Y.; Liu, X.; Schubert, D. W. Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica. Polymer 2016, 82, 57−65.  doi: 10.1016/j.polymer.2015.11.029

    31. [31]

      Boudaoud, N.; Benali, S.; Mincheva, R.; Satha, H.; Raquez, J. M.; Dubois, P. Hydrolytic degradation of poly(L-lactic acid)/poly(methyl methacrylate) blends. Polym. Int. 2018, 67, 1393−1400.  doi: 10.1002/pi.2018.67.issue-10

    32. [32]

      Fischer, E. W.; Sterzel, H. J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid Polym. Sci. 1973, 251, 980−990.

    33. [33]

      Liu, L.; Wang, Y.; Xiang, F. M.; Li, Y. L.; Han, L.; Zhou, Z. W. Effects of functionalized multiwalled carbon nanotubes on the morphologies and mechanical properties of PP/EVA blend. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 1481−1491.  doi: 10.1002/(ISSN)1099-0488

    34. [34]

      Li, Y. L.; Wang, Y.; Liu, L.; Han, L.; Xiang, F. M.; Zhou, Z. W. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 326−339.  doi: 10.1002/polb.v47:3

    35. [35]

      Pantani, R.; Sorrentino, A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013, 98, 1089−1096.  doi: 10.1016/j.polymdegradstab.2013.01.005

    36. [36]

      Kulinski, Z.; Piorkowska, E. Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 2005, 46, 10290−10300.  doi: 10.1016/j.polymer.2005.07.101

    37. [37]

      Rodriguez, E.; Shahbikian, S.; Marcos, B.; Huneault, M. A. Hydrolytic stability of polylactide and poly(methyl methacrylate) blends. J. Appl. Polym. Sci. 2018, 135, 45991.  doi: 10.1002/app.45991

    38. [38]

      Hao, X. Q.; Kaschta, J.; Liu, X. H.; Pan, Y.; Schubert, D. W. Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer 2015, 80, 38−45.  doi: 10.1016/j.polymer.2015.10.037

    39. [39]

      Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012−8021.  doi: 10.1021/ma051232r

    40. [40]

      Pan, P. J.; Liang, Z. C.; Zhu, B.; Dong, T.; Inoue, Y. Roles of physical aging on crystallization kinetics and induction period of poly(L-lactide). Macromolecules 2008, 41, 8011−8019.  doi: 10.1021/ma801436f

    41. [41]

      Zhang, J. M.; Li, C. W.; Duan, Y. X.; Domb, A. J.; Ozaki, Y. Glass transition and disorder-to-order phase transition behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Vib. Spectr. 2010, 53, 307−310.  doi: 10.1016/j.vibspec.2010.03.015

    42. [42]

      Berquier, J. M.; Arribart, H. Attenuated total reflection Fourier transform infrared spectroscopy study of poly(methyl methacrylate) adsorption on a silica thin film: polymer/surface interactions. Langmuir 1998, 14, 3716−3719.  doi: 10.1021/la9703961

    43. [43]

      Steiner, G.; Zimmerer, C.; Salzer, R. Characterization of metal-supported poly(methyl methacrylate) microstructures by FTIR imaging spectroscopy. Langmuir 2006, 22, 4125−4130.  doi: 10.1021/la053221x

    44. [44]

      Li, M. X.; Kim, S. H.; Choi, S. W.; Goda, K.; Lee, W. I. Effect of reinforcing particles on hydrolytic degradation behavior of poly(lactic acid) composites. Composites Part B 2016, 96, 248−254.  doi: 10.1016/j.compositesb.2016.04.029

    45. [45]

      Raquez, J. M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504−1542.  doi: 10.1016/j.progpolymsci.2013.05.014

    46. [46]

      Zhang, Z. X.; Wang, W. Y.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J. Phys. Chem. C 2016, 120, 22793−22802.  doi: 10.1021/acs.jpcc.6b06345

    47. [47]

      Xie, Y. N.; Liu, D. F.; Sun, D. X.; Yang, J. H.; Qi, X. D.; Wang, Y. Crystallization and concentration fluctuation of miscible poly(vinylidene fluoride)/poly(methyl methacrylate) blends containing carbon nanotubes: molecular weight dependence of poly(methyl methacrylate). Eur. Polym. J. 2018, 105, 478−490.  doi: 10.1016/j.eurpolymj.2018.01.022

    48. [48]

      Xavier, P.; Bose, S. Multiwalled-carbon-nanotube-induced miscibility in near-critical PS/PVME blends: assessment through concentration fluctuations and segmental relaxation. J. Phys. Chem. B 2013, 117, 8633−8646.  doi: 10.1021/jp404610w

    49. [49]

      Fowkes. F. M. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J. Phys. Chem. B 1962, 66, 382−382.  doi: 10.1021/j100808a524

    50. [50]

      Owens, D. K.; Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741−1747.  doi: 10.1002/app.1969.070130815

    51. [51]

      Shi, Y. Y.; Yang, J. H.; Huang, T.; Zhang, N.; Chen, C.; Wang, Y. Selective localization of carbon nanotubes at the interface of poly(L-lactide)/ethylene-co-vinyl acetate resulting in lowered electrical resistivity. Composites Part B 2013, 55, 463−469.  doi: 10.1016/j.compositesb.2013.07.012

    52. [52]

      http://www.surface-tension.de/solid-surface-energy.htm.

    53. [53]

      Nuriel, S.; Liu, L.; Barber, A. H.; Wagner, H. D. Direct measurement of multiwall nanotube surface tension. Chem. Phys. Lett. 2005, 404, 263−266.  doi: 10.1016/j.cplett.2005.01.072

    54. [54]

      Kyutoku, H.; Maeda, N.; Sakamoto, H.; Nishimura, H.; Yamada, K. Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites. Carbohydr. Polym. 2019, 203, 95−102.  doi: 10.1016/j.carbpol.2018.09.033

  • 加载中
    1. [1]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    2. [2]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    3. [3]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    4. [4]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    5. [5]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    6. [6]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    7. [7]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    8. [8]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    9. [9]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    10. [10]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    11. [11]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    12. [12]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    13. [13]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

    14. [14]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    15. [15]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    16. [16]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    17. [17]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    18. [18]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    19. [19]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    20. [20]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

Metrics
  • PDF Downloads(0)
  • Abstract views(2218)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return