Poly(methyl methacrylate)-induced Microstructure and Hydrolysis Behavior Changes of Poly(L-lactic acid)/Carbon Nanotubes Composites

Xu Yu Xin-Zheng Jin Ting Huang Nan Zhang Xiao-Yu Li Yong Wang

Citation:  Xu Yu, Xin-Zheng Jin, Ting Huang, Nan Zhang, Xiao-Yu Li, Yong Wang. Poly(methyl methacrylate)-induced Microstructure and Hydrolysis Behavior Changes of Poly(L-lactic acid)/Carbon Nanotubes Composites[J]. Chinese Journal of Polymer Science, 2020, 38(2): 195-204. doi: 10.1007/s10118-019-2323-z shu

Poly(methyl methacrylate)-induced Microstructure and Hydrolysis Behavior Changes of Poly(L-lactic acid)/Carbon Nanotubes Composites

English


    1. [1]

      Jia, L.; Zhang, W. C.; Tong, B.; Yang, R. J. Crystallization, mechanical and flame-retardant properties of poly(lactic acid) composites with DOPO and DOPO-POSS. Chinese J. Polym. Sci. 2018, 36, 871−879. doi: 10.1007/s10118-018-2098-7

    2. [2]

      Karamanlioglu, M.; Preziosi, R.; Robson, G. D. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polym. Degrad. Stab. 2017, 137, 122−130. doi: 10.1016/j.polymdegradstab.2017.01.009

    3. [3]

      Girdthep, S.; Sankong, W.; Pongmalee, A.; Saelee, T.; Punyodom, W.; Meepowpan, P.; Worajittiphon, P. Enhanced crystallization, thermal properties, and hydrolysis resistance of poly(L-lactic acid) and its stereocomplex by incorporation of graphene nanoplatelets. Polym. Test. 2017, 61, 229−239. doi: 10.1016/j.polymertesting.2017.05.009

    4. [4]

      Holcapkova, P.; Stloukal, P.; Kucharczyk, P.; Omastova, M.; Kovalcik, A. Anti-hydrolysis effect of aromatic carbodiimide in poly(lactic acid) wood flour composites. Composites Part A 2017, 103, 283−291. doi: 10.1016/j.compositesa.2017.10.003

    5. [5]

      Stloukal, P.; Jandikova, G.; Koutny, M.; Sedlařík, V. Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polym. Test. 2016, 54, 19−28. doi: 10.1016/j.polymertesting.2016.06.007

    6. [6]

      Jandíková, G.; Stoplova, P.; Di Martino, A.; Stloukal, P.; Kucharczyk, P.; Machovsky, M.; Sedlarik, V. Effect of a hybrid zinc stearate-silver system on the properties of polylactide and its abiotic and the biotic degradation and antimicrobial activity thereof. Chinese J. Polym. Sci. 2018, 36, 925−933. doi: 10.1007/s10118-018-2120-0

    7. [7]

      Tsuji, H.; Nakahara, K. Poly(L-lactide). IX. Hydrolysis in acid media. J. Appl. Polym. Sci. 2002, 86, 186−194.

    8. [8]

      Tsuji, H.; Ikada, Y. Properties and morphology of poly(L-lactide). II. Hydrolysis in alkaline solution. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 59−66. doi: 10.1002/(ISSN)1099-0518

    9. [9]

      Tsuji, H.; Ikarashi, K. In vitro hydrolysis of poly(L-lactide) crystalline residues as extended-chain crystallites. Polym. Degrad. Stab. 2004, 85, 647−656. doi: 10.1016/j.polymdegradstab.2004.03.004

    10. [10]

      Xu, L.; Crawford, K.; Gorman, C. B. Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules 2011, 44, 4777−4782. doi: 10.1021/ma2000948

    11. [11]

      Chen, H. M.; Feng, C. X.; Zhang, W. B.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y. Hydrolytic degradation behavior of poly(L-lactide)/carbon nanotubes nanocomposites. Polym. Degrad. Stab. 2013, 98, 198−208. doi: 10.1016/j.polymdegradstab.2012.10.009

    12. [12]

      Chen, H. M.; Wang, Y. P.; Chen, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Hydrolytic degradation behavior of poly(L-lactide)/SiO2 composites. Polym. Degrad. Stab. 2013, 98, 2672−2679. doi: 10.1016/j.polymdegradstab.2013.09.033

    13. [13]

      Chen, H. M.; Shen, Y.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z. W. Molecular ordering and α′-form formation of poly(L-lactide) during the hydrolytic degradation. Polymer 2013, 54, 6644−6653. doi: 10.1016/j.polymer.2013.09.059

    14. [14]

      Iñiguez-Franco, F.; Auras, R.; Burgess, G.; Holmes, D.; Fang, X.; Rubino, M.; Soto-Valdez, H. Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer 2016, 99, 315−323. doi: 10.1016/j.polymer.2016.07.018

    15. [15]

      Wang, Y. P.; Xiao, Y. J.; Duan, J.; Yang, J. H.; Wang, Y.; Zhang, C. L. Accelerated hydrolytic degradation of poly(lactic acid) achieved by adding poly(butylene succinate). Polym. Bull. 2015, 73, 1067−1083.

    16. [16]

      Oyama, H. T.; Tanishima, D.; Ogawa, R. Biologically safe poly(L-lactic acid) blends with tunable degradation rate: microstructure, degradation mechanism, and mechanical properties. Biomacromolecules 2017, 18, 1281−1292. doi: 10.1021/acs.biomac.7b00016

    17. [17]

      Huang, Y.; Chen, F.; Pan, Y.; Chen, C.; Jiang, L.; Dan, Y. Effect of hydrophobic fluoropolymer and crystallinity on the hydrolytic degradation of poly(lactic acid). Eur. Polym. J. 2017, 97, 308−318. doi: 10.1016/j.eurpolymj.2017.09.044

    18. [18]

      Ma, P. M.; Xu, P. W.; Zhai, Y. H.; Dong, W. F.; Zhang, Y.; Chen, M. Q. Biobased poly(lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates: morphology evolution, superior properties, and partial degradability. ACS Sustain. Chem. Eng. 2015, 3, 2211−2219. doi: 10.1021/acssuschemeng.5b00462

    19. [19]

      Andersson, S. R.; Hakkarainen, M.; Inkinen, S.; Sodergard, A.; Albertsson, A. C. Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromolecules 2012, 13, 1212−1222. doi: 10.1021/bm300196h

    20. [20]

      Arias, V.; Hoglund, A.; Odelius, K.; Albertsson, A. C. Tuning the degradation profiles of poly(L-lactide)-based materials through miscibility. Biomacromolecules 2014, 15, 391−402. doi: 10.1021/bm401667b

    21. [21]

      Jašo, V.; Glenn, G.; Klamczynski, A.; Petrović, Z. S. Biodegradability study of polylactic acid/thermoplastic polyurethane blends. Polym. Test. 2015, 47, 1−3. doi: 10.1016/j.polymertesting.2015.07.011

    22. [22]

      Wang, Y. P.; Wei, X.; Duan, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol). Chinese J. Polym. Sci. 2017, 35, 386−399. doi: 10.1007/s10118-017-1904-y

    23. [23]

      Chen, H.; Chen, J.; Chen, J.; Yang, J.; Huang, T.; Zhang, N.; Wang, Y. Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(L-lactide). Polym. Degrad. Stab. 2012, 97, 2273−2283. doi: 10.1016/j.polymdegradstab.2012.07.037

    24. [24]

      Elsawy, M. A.; Kim, K. H.; Park, J. W.; Deep, A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sust. Energ. Rev. 2017, 79, 1346−1352. doi: 10.1016/j.rser.2017.05.143

    25. [25]

      Reddy, N.; Nama, D.; Yang, Y. Poly(lactic acid)/polypropylene polyblend fibers for better resistance to degradation. Polym. Degrad. Stab. 2018, 93, 233−241.

    26. [26]

      Yan, S.; Yin, J.; Yang, Y.; Dai, Z.; Ma, J.; Chen, X. Surface-grafted silica linked with L-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(L-lactide). Polymer 2007, 48, 1688−1694. doi: 10.1016/j.polymer.2007.01.037

    27. [27]

      Luo, Y. B.; Wang, X. L.; Wang, Y. Z. Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym. Degrad. Stab. 2012, 97, 721−728. doi: 10.1016/j.polymdegradstab.2012.02.011

    28. [28]

      Duan, J.; Xie, Y. N.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Zhang, J. H. Graphene oxide induced hydrolytic degradation behavior changes of poly(L-lactide) in different mediums. Polym. Test. 2016, 56, 220−228. doi: 10.1016/j.polymertesting.2016.10.015

    29. [29]

      Shirahase, T.; Komatsu, Y.; Tominaga, Y.; Asai, S.; Sumita, M. Miscibility and hydrolytic degradation in alkaline solution of poly(L-lactide) and poly(methyl methacrylate) blends. Polymer 2006, 47, 4839−4844. doi: 10.1016/j.polymer.2006.04.012

    30. [30]

      Hao, X.; Kaschta, J.; Pan, Y.; Liu, X.; Schubert, D. W. Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica. Polymer 2016, 82, 57−65. doi: 10.1016/j.polymer.2015.11.029

    31. [31]

      Boudaoud, N.; Benali, S.; Mincheva, R.; Satha, H.; Raquez, J. M.; Dubois, P. Hydrolytic degradation of poly(L-lactic acid)/poly(methyl methacrylate) blends. Polym. Int. 2018, 67, 1393−1400. doi: 10.1002/pi.2018.67.issue-10

    32. [32]

      Fischer, E. W.; Sterzel, H. J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid Polym. Sci. 1973, 251, 980−990.

    33. [33]

      Liu, L.; Wang, Y.; Xiang, F. M.; Li, Y. L.; Han, L.; Zhou, Z. W. Effects of functionalized multiwalled carbon nanotubes on the morphologies and mechanical properties of PP/EVA blend. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 1481−1491. doi: 10.1002/(ISSN)1099-0488

    34. [34]

      Li, Y. L.; Wang, Y.; Liu, L.; Han, L.; Xiang, F. M.; Zhou, Z. W. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 326−339. doi: 10.1002/polb.v47:3

    35. [35]

      Pantani, R.; Sorrentino, A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013, 98, 1089−1096. doi: 10.1016/j.polymdegradstab.2013.01.005

    36. [36]

      Kulinski, Z.; Piorkowska, E. Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 2005, 46, 10290−10300. doi: 10.1016/j.polymer.2005.07.101

    37. [37]

      Rodriguez, E.; Shahbikian, S.; Marcos, B.; Huneault, M. A. Hydrolytic stability of polylactide and poly(methyl methacrylate) blends. J. Appl. Polym. Sci. 2018, 135, 45991. doi: 10.1002/app.45991

    38. [38]

      Hao, X. Q.; Kaschta, J.; Liu, X. H.; Pan, Y.; Schubert, D. W. Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer 2015, 80, 38−45. doi: 10.1016/j.polymer.2015.10.037

    39. [39]

      Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012−8021. doi: 10.1021/ma051232r

    40. [40]

      Pan, P. J.; Liang, Z. C.; Zhu, B.; Dong, T.; Inoue, Y. Roles of physical aging on crystallization kinetics and induction period of poly(L-lactide). Macromolecules 2008, 41, 8011−8019. doi: 10.1021/ma801436f

    41. [41]

      Zhang, J. M.; Li, C. W.; Duan, Y. X.; Domb, A. J.; Ozaki, Y. Glass transition and disorder-to-order phase transition behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Vib. Spectr. 2010, 53, 307−310. doi: 10.1016/j.vibspec.2010.03.015

    42. [42]

      Berquier, J. M.; Arribart, H. Attenuated total reflection Fourier transform infrared spectroscopy study of poly(methyl methacrylate) adsorption on a silica thin film: polymer/surface interactions. Langmuir 1998, 14, 3716−3719. doi: 10.1021/la9703961

    43. [43]

      Steiner, G.; Zimmerer, C.; Salzer, R. Characterization of metal-supported poly(methyl methacrylate) microstructures by FTIR imaging spectroscopy. Langmuir 2006, 22, 4125−4130. doi: 10.1021/la053221x

    44. [44]

      Li, M. X.; Kim, S. H.; Choi, S. W.; Goda, K.; Lee, W. I. Effect of reinforcing particles on hydrolytic degradation behavior of poly(lactic acid) composites. Composites Part B 2016, 96, 248−254. doi: 10.1016/j.compositesb.2016.04.029

    45. [45]

      Raquez, J. M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504−1542. doi: 10.1016/j.progpolymsci.2013.05.014

    46. [46]

      Zhang, Z. X.; Wang, W. Y.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J. Phys. Chem. C 2016, 120, 22793−22802. doi: 10.1021/acs.jpcc.6b06345

    47. [47]

      Xie, Y. N.; Liu, D. F.; Sun, D. X.; Yang, J. H.; Qi, X. D.; Wang, Y. Crystallization and concentration fluctuation of miscible poly(vinylidene fluoride)/poly(methyl methacrylate) blends containing carbon nanotubes: molecular weight dependence of poly(methyl methacrylate). Eur. Polym. J. 2018, 105, 478−490. doi: 10.1016/j.eurpolymj.2018.01.022

    48. [48]

      Xavier, P.; Bose, S. Multiwalled-carbon-nanotube-induced miscibility in near-critical PS/PVME blends: assessment through concentration fluctuations and segmental relaxation. J. Phys. Chem. B 2013, 117, 8633−8646. doi: 10.1021/jp404610w

    49. [49]

      Fowkes. F. M. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J. Phys. Chem. B 1962, 66, 382−382. doi: 10.1021/j100808a524

    50. [50]

      Owens, D. K.; Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741−1747. doi: 10.1002/app.1969.070130815

    51. [51]

      Shi, Y. Y.; Yang, J. H.; Huang, T.; Zhang, N.; Chen, C.; Wang, Y. Selective localization of carbon nanotubes at the interface of poly(L-lactide)/ethylene-co-vinyl acetate resulting in lowered electrical resistivity. Composites Part B 2013, 55, 463−469. doi: 10.1016/j.compositesb.2013.07.012

    52. [52]

      http://www.surface-tension.de/solid-surface-energy.htm.

    53. [53]

      Nuriel, S.; Liu, L.; Barber, A. H.; Wagner, H. D. Direct measurement of multiwall nanotube surface tension. Chem. Phys. Lett. 2005, 404, 263−266. doi: 10.1016/j.cplett.2005.01.072

    54. [54]

      Kyutoku, H.; Maeda, N.; Sakamoto, H.; Nishimura, H.; Yamada, K. Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites. Carbohydr. Polym. 2019, 203, 95−102. doi: 10.1016/j.carbpol.2018.09.033

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  2225
  • HTML全文浏览量:  91
文章相关
  • 发布日期:  2020-02-01
  • 收稿日期:  2019-05-20
  • 修回日期:  2019-06-24
  • 网络出版日期:  2019-09-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章