Numerical Simulation of the Distribution Function and Free Energy of a Single Wormlike Polymer Confined between Hard Walls

Yang Gu Hui Zhang Dong-Liang Zhang

Citation:  Yang Gu, Hui Zhang, Dong-Liang Zhang. Numerical Simulation of the Distribution Function and Free Energy of a Single Wormlike Polymer Confined between Hard Walls[J]. Chinese Journal of Polymer Science, 2020, 38(2): 179-186. doi: 10.1007/s10118-019-2322-0 shu

Numerical Simulation of the Distribution Function and Free Energy of a Single Wormlike Polymer Confined between Hard Walls

English


    1. [1]

      Li, H.; Qian, C. J.; Wang, C.; Luo, M. B. Critical adsorption of a flexible polymer confined between two parallel interacting surfaces. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2013, 87, 012602. doi: 10.1103/PhysRevE.87.012602

    2. [2]

      de Gennes, P. G. Scaling concepts in polymer physics. Cornell University Press, 1979.

    3. [3]

      Odijk, T. The statistics and dynamics of confined or entangled stiff polymers. Macromolecules 1983, 16, 1340−1344. doi: 10.1021/ma00242a015

    4. [4]

      Chen, J. Z. Y. Theory of wormlike polymer chains in confinement. Prog. Polym. Sci. 2016, 54-55, 3−46. doi: 10.1016/j.progpolymsci.2015.09.002

    5. [5]

      Chen, J. Z. Y.; Sullivan, D. E.; Yuan, X. Model for wormlike polymers confined between hard walls. Europhys. Lett. 2005, 72, 89−95. doi: 10.1209/epl/i2005-10208-x

    6. [6]

      Chen, J. Z. Y.; Sullivan, D. E. Free energy of a wormlike polymer chain confined in a slit: crossover between two scaling regimes. Macromolecules 2006, 39, 7769−7773. doi: 10.1021/ma060871e

    7. [7]

      Cordeiro, C. E.; Molisana, M.; Thirumalai, D. Shape of confined polymer chains. J. De Physique II 1997, 7, 433−447. doi: 10.1051/jp2:1997136

    8. [8]

      Tang, J.; Levy, S. L.; Trahan, D. W.; Jones J. J. Revisiting the conformation and dynamics of DNA in slitlike confinement. Macromolecules 2010, 43, 7368−7377. doi: 10.1021/ma101157x

    9. [9]

      Fredrickson, G. H. The equilibrium theory of inhomogeneous polymers. Clarendon, 2006.

    10. [10]

      Liang, Q.; Li, J.; Zhang, P.; Chen, J. Z. Modified diffusion equation for the wormlike-chain statistics in curvilinear coordinates. J. Phys. Chem. 2013, 138, 244910. doi: 10.1063/1.4811515

    11. [11]

      Odijk, T. Theory of lyotropic polymer liquid crystals. Macromolecules 1986, 19, 2313−2329. doi: 10.1021/ma00163a001

    12. [12]

      Smyda, M. R.; Harvey, S. C. The entropic cost of polymer confinement. J. Phys. Chem. B 2012, 116, 10928−10934. doi: 10.1021/jp302807r

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  2450
  • HTML全文浏览量:  83
文章相关
  • 发布日期:  2020-02-01
  • 收稿日期:  2019-05-13
  • 修回日期:  2019-06-19
  • 网络出版日期:  2019-10-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章