Citation: Meng-Yang Wang, Qiu-Jing Zhang, Qiao-Qiao Shen, Qing-Yin Li, Shi-Jie Ren. Truxene-based Conjugated Microporous Polymers via Different Synthetic Methods[J]. Chinese Journal of Polymer Science, ;2020, 38(2): 151-157. doi: 10.1007/s10118-019-2321-1 shu

Truxene-based Conjugated Microporous Polymers via Different Synthetic Methods

  • Four truxene-based conjugated microporous polymers (Tr-CMPs) were prepared via different synthetic methods and their structure-property relationships were studied. The polymer networks have high Brunauer-Emmett-Teller (BET) specific surface areas ranging from 554 m2·g–1 to 1024 m2·g–1. Pore sizes of the CMPs with different linkers are mainly located between 0.60 and 1.96 nm. Among all the Tr-CMPs, Tr-CMP4 has the highest BET surface area of 1024 m2·g–1 and exhibits the highest H2 uptake of 0.88 wt%. Tr-CMP2 prepared by Suzuki-Miyaura coupling reaction has the highest photoluminescence quantum yields (PLQYs) of 13.06% and CO2 uptake of 6.25 wt%.
  • 加载中
    1. [1]

      McKeown, N. B.; Gahnem, B.; Msayib, K. J.; Budd, P. M.; Tattershall, C. E.; Mahmood, K.; Tan, S.; Book, D.; Langmi, H. W.; Walton, A. Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew. Chem. Int. Ed. 2006, 45, 1804−1807.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268−272.  doi: 10.1126/science.1139915

    3. [3]

      Wang, T. Q.; Xu, Y.; He, Z. D.; Zhou, M. H.; Huang, K. Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study. Chinese J. Polym. Sci. 2018, 36, 98−105.  doi: 10.1007/s10118-018-2007-0

    4. [4]

      Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 2009, 48, 9457−9460.  doi: 10.1002/anie.200904637

    5. [5]

      Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 2007, 46, 8574−8578.  doi: 10.1002/anie.v46:45

    6. [6]

      Chen, L.; Yang, Y.; Jiang, D. CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 2010, 132, 9138.  doi: 10.1021/ja1028556

    7. [7]

      Jiang, J. X.; Li, Y.; Wu, X.; Xiao, J.; Adams, D. J.; Cooper, A. I. Conjugated microporous polymers with rose bengal dye for highly efficient heterogeneous organo-photocatalysis. Macromolecules 2013, 46, 8779−8783.  doi: 10.1021/ma402104h

    8. [8]

      Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. Angew. Chem. Int. Ed. 2011, 50, 8753−8757.  doi: 10.1002/anie.201103493

    9. [9]

      Liu, X.; Xu, Y.; Jiang, D. Conjugated microporous polymers as molecular sensing devices: microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. J. Am. Chem. Soc. 2012, 134, 8738−8741.  doi: 10.1021/ja303448r

    10. [10]

      Guo, L.; Cao, D. Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives. J. Mater. Chem. C 2015, 3, 8490−8494.  doi: 10.1039/C5TC01649E

    11. [11]

      Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J. Am. Chem. Soc. 2010, 132, 6742−6748.  doi: 10.1021/ja100327h

    12. [12]

      Jiang, J. X.; Su, F.; Niu, H.; Wood, C. D.; Campbell, N. L.; Khimyak, Y. Z.; Cooper, A. I. Conjugated microporous poly(phenylene butadiynylene)s. Chem. Commun. 2008, 8, 486−488.

    13. [13]

      Ren, S.; Dawson, R.; Laybourn, A.; Jiang, J.; Khimyak, Y.; Adams, D. J.; Cooper, A. I. Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine. Polym. Chem. 2012, 3, 928.  doi: 10.1039/c2py00585a

    14. [14]

      Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated microporous polymers: design, synthesis and applicatio. Chem. Soc. Rev. 2013, 42, 8012−8031.  doi: 10.1039/c3cs60160a

    15. [15]

      Wang, J. L.; Yan, J.; Tang, Z. M.; Xiao, Q.; Ma, Y.; Pei, J. Gradient shape-persistent π-conjugated dendrimers for light-harvesting: Synthesis, photophysical properties, and energy funneling. J. Am. Chem. Soc. 2008, 130, 9952−9962.  doi: 10.1021/ja803109r

    16. [16]

      Wang, J. Y.; Han, J. M.; Yan, J.; Ma, Y.; Pei, J. A mechanically interlocked [3]rotaxane as a light-harvesting antenna: synthesis, characterization, and intramolecular energy transfer. Chemistry 2009, 15, 3585−3594.  doi: 10.1002/chem.v15:14

    17. [17]

      Wang, J. L.; Chan, Y. T.; Moorefield, C. N.; Pei, J.; Modarelli, D. A.; Romano, N. C.; Newkome, G. R. Shape-persistent, truxene-based, nano-sized bisterpyridine ruthenium(II) complexes: synthesis and photophysical properties. Macromol. Rapid Commun. 2010, 31, 850−855.  doi: 10.1002/marc.v31:9/10

    18. [18]

      Jiang, Y.; Wang, J. Y.; Ma, Y.; Cui, Y. X.; Zhou, Q. F.; Pei, J. Large rigid blue-emitting π-conjugated stilbenoid-based dendrimers: synthesis and properties. Org. Lett. 2006, 8, 4287−4290.  doi: 10.1021/ol0616283

    19. [19]

      Luo, J.; Zhou, Y.; Niu, Z. Q.; Zhou, Q. F.; Ma, Y. G.; Pei, J. Three-dimensional architectures for highly stable pure blue emission. J. Am. Chem. Soc. 2007, 129, 11314−11315.  doi: 10.1021/ja073466r

    20. [20]

      Wang, L.; Jiang, Y.; Luo, J.; Zhou, Y.; Zhou, J.; Wang, J.; Pei, J.; Cao, Y. Highly efficient and color-stable deep-blue organic light-emitting diodes based on a solution-processible dendrimer. Adv. Mater. 2009, 21, 4854−4858.  doi: 10.1002/adma.200901039

    21. [21]

      Sun, Y. M.; Xiao, K.; Liu, Y. Q.; Wang, J. L.; Pei, J.; Yu, G.; Zhu, D. B. Oligothiophene-functionalized truxene: star-shaped compounds for organic field-effect transistors. Adv. Funct. Mater. 2005, 15, 818−822.  doi: 10.1002/(ISSN)1616-3028

    22. [22]

      Wang, J. L.; He, Z.; Wu, H.; Cao, Y.; Pei, J. π-Conjugated molecular heterojunctions with multi[60]fullerene: photophysical, electrochemical, and photovoltaic properties. New J. Chem. 2012, 36, 1583−1588.  doi: 10.1039/c2nj40121e

    23. [23]

      Lin, S. H.; Hsu, Y. C.; Lin, J. T.; Lin, C. K.; Yang, J. S. Isotruxene-derived cone-shaped organic dyes for dye-sensitized solar cells. J. Org. Chem. 2010, 75, 7877−7886.  doi: 10.1021/jo101831p

    24. [24]

      Zong, X.; Liang, M.; Fan, C.; Tang, K.; Li, G.; Sun, Z.; Xue, S. Design of truxene-based organic dyes for high-efficiency dye-sensitized solar cells employing cobalt redox shuttle. J. Phys. Chem. C 2012, 116, 11241−11250.

    25. [25]

      Zong, X.; Liang, M.; Chen, T.; Jia, J.; Wang, L.; Sun, Z.; Xue, S. Efficient iodine-free dye-sensitized solar cells employing truxene-based organic dyes. Chem. Commun. 2012, 48, 6645−6647.  doi: 10.1039/c2cc32926c

    26. [26]

      Yuan, M. S.; Liu, Z. Q.; Fang, Q. Donor-and-acceptor substituted truxenes as multifunctional fluorescent probes. J. Org. Chem. 2007, 72, 7915−7922.  doi: 10.1021/jo071064w

    27. [27]

      Zhou, H.; Zhao, X.; Huang, T.; Lu, R.; Zhang, H.; Qi, X.; Xue, P.; Liu, X.; Zhang, X. Synthesis of star-shaped monodisperse oligo(9,9-di-n-octylfluorene-2,7-vinylene)s functionalized truxenes with two-photon absorption properties. Org. Biomol. Chem. 2011, 9, 1600−1607.  doi: 10.1039/c0ob00803f

    28. [28]

      Xie, Y.; Zhang, X.; Xiao, Y.; Zhang, Y.; Zhou, F.; Qi, J.; Qu, J. Fusing three perylenebisimide branches and a truxene core into a star-shaped chromophore with strong two-photon excited fluorescence and high photostability. Chem. Commun. 2012, 48, 4338−4340.  doi: 10.1039/c2cc31261a

    29. [29]

      Du, B.; Fortin, D.; Harvey, P. D. Singlet and triplet energy transfers in tetra-(meso-truxene)zinc(II)- and tetra-(meso-tritruxene)zinc(II) porphyrin and porphyrin-free base dendrimers. Inorg. Chem. 2011, 50, 11493−11505.  doi: 10.1021/ic2013667

    30. [30]

      Diring, S.; Ventura, B.; Barbieri, A.; Ziessel, R. Photoinduced energy transfer processes in hybrid organic-inorganic multichromophoric arrays arranged on a truxene-based platform. Dalton Trans. 2012, 41, 13090−13096.  doi: 10.1039/c2dt30385j

    31. [31]

      Sprick, R. S.; Thomas, A.; Scherf, U. Acid catalyzed synthesis of carbonyl-functionalized microporous ladder polymers with high surface area. Polym. Chem. 2010, 1, 283−285.  doi: 10.1039/b9py00375d

    32. [32]

      Singh, H.; Tomer, V. K.; Jena, N.; Bala, I.; Sharma, N.; Nepak, D.; De Sarkar, A.; Kailasam, K.; Pal, S. K. A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J. Mater. Chem. A 2017, 5, 21820−21827.  doi: 10.1039/C7TA05043G

    33. [33]

      Battula, V. R.; Singh, H.; Kumar, S.; Bala, I.; Pal, S. K.; Kailasam, K. Natural sunlight driven oxidative homocoupling of amines by a truxene-based conjugated microporous polymer. ACS Catal. 2018, 8, 6751−6759.  doi: 10.1021/acscatal.8b00623

    34. [34]

      Xu, Y.; Mao, N.; Feng, S.; Zhang, C.; Wang, F.; Chen, Y.; Zeng, J.; Jiang, J. X. Perylene-containing conjugated microporous polymers for photocatalytic hydrogen evolution. Macromol. Chem. Phys. 2017, 218, 1700049.  doi: 10.1002/macp.v218.14

    35. [35]

      Ren, S.; Dawson, R.; Adams, D. J.; Cooper, A. I. Low band-gap benzothiadiazole conjugated microporous polymers. Polym. Chem. 2013, 4, 5585−5590.  doi: 10.1039/c3py00690e

    36. [36]

      Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl. Chem. 1985, 57, 603−619.  doi: 10.1351/pac198557040603

  • 加载中
    1. [1]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    2. [2]

      Jiaxiang GuoZeyi LiTianyu ZhangXinyu TianYue WangChuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337

    3. [3]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    4. [4]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    5. [5]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    6. [6]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    7. [7]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    8. [8]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    9. [9]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    10. [10]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    11. [11]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    12. [12]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    13. [13]

      Chu ChuYuancheng QinCailing NiJianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616

    14. [14]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    15. [15]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    16. [16]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    17. [17]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    18. [18]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    19. [19]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    20. [20]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

Metrics
  • PDF Downloads(0)
  • Abstract views(1897)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return