Citation: Kai Shi, Di Sha, Jiu-Duo Xu, Xu Yang, Bao-Long Wang, Yan-Xiong Pan, Xiang-Ling Ji. Hofmeister Effect on Thermo-responsive Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges[J]. Chinese Journal of Polymer Science, ;2020, 38(3): 257-267. doi: 10.1007/s10118-019-2320-2 shu

Hofmeister Effect on Thermo-responsive Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges

  • Corresponding author: Xiang-Ling Ji, xlji@ciac.ac.cn
  • Received Date: 11 May 2019
    Revised Date: 17 June 2019
    Available Online: 20 September 2019

  • In this work, the Hofmeister effects of nine kinds of anions at different concentrations on the lower critical solution temperature (LCST) of the macroporous thermo-responsive poly(N-isopropylacrylamide) grafted poly(vinyl alcohol) formaldehyde (PVF-g-PNIPAM) hydrogels are investigated with differential scanning calorimetry (DSC). Four kinds of anions with strong hydration, including CO32–, SO42–, S2O32–, and F, and four kinds of anions with weak hydration, including Br, NO3, I, and ClO4, and Cl as a medium anion are systematically studied and found to demonstrate the effects of the residual hydroxyl groups and network structure of PVF on the LCST values of PVF-g-PNIPAM hydrogels in comparison with that of neat PNIPAM. On the one hand, the existence of hydroxyl groups on PVF backbone promotes the solubility of grafted PNIPAM due to their hydrophilicity and hydrogen-bond interactions with water. On the other hand, the network structure of as-prepared samples restricts free movements of grafted PNIPAM chains, which results in the increase of LCST values. In addition, the difference of grafting percentage also influences the variation of LCST values of PVF-g-PNIPAM hydrogels under salt concentration.
  • 加载中
    1. [1]

      Hofmeister, F. Zur Lehre Von der Wirkung der Salze. Naunyn-Schmiedeberg's Arch. Pharmacol. 1888, 25, 1−30.

    2. [2]

      Zhang, Y.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505−14510.  doi: 10.1021/ja0546424

    3. [3]

      Frank, H. S.; Evans, M. W. Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 1945, 13, 507−532.  doi: 10.1063/1.1723985

    4. [4]

      Collins, K. D.; Washabaugh, M. W. The Hofmeister effect and the behavior of water at interfaces. Q. Rev. Biophys. 1985, 18, 323−422.  doi: 10.1017/S0033583500005369

    5. [5]

      Marcus, Y. Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 2009, 109, 1346−1370.  doi: 10.1021/cr8003828

    6. [6]

      Omta, A. W.; Kropman, M. F.; Woutersen, S.; Bakker, H. J. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 2003, 301, 347−349.  doi: 10.1126/science.1084801

    7. [7]

      Smith, J. D.; Saykally R. J.; Geissler P. L. The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 2007, 129, 13847−13856.  doi: 10.1021/ja071933z

    8. [8]

      Zangi, R. Can salting-in/salting-out ions be classified as chaotropes/kosmotropes? J. Phys. Chem. B 2010, 114, 643−650.  doi: 10.1021/jp909034c

    9. [9]

      Kunz, W.; Nostro P. L.; Ninham, B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 2004, 9, 1−18.  doi: 10.1016/j.cocis.2004.05.004

    10. [10]

      Tobias, D. J.; Hemminger, J. C. Getting specific about specific ion effects. Science 2008, 319, 1197−1198.  doi: 10.1126/science.1152799

    11. [11]

      Zhang, Y.; Cremer, P. S. Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem. 2010, 61, 63−83.  doi: 10.1146/annurev.physchem.59.032607.093635

    12. [12]

      Jungwirth, P.; Cremer, P. S. Beyond Hofmeister. Nat. Chem. 2014, 6, 261−263.  doi: 10.1038/nchem.1899

    13. [13]

      Broering, J. M.; Bommarius, A. S. Evaluation of Hofmeister effects on the kinetic stability of proteins. J. Phys. Chem. B 2005, 109, 20612−20619.  doi: 10.1021/jp053618+

    14. [14]

      Pelton, R. Temperature-sensitive aqueous microgels. Adv. Colloid Interf. Sci. 2000, 85, 1−33.  doi: 10.1016/S0001-8686(99)00023-8

    15. [15]

      Heskins, M.; Guillet, J. E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Part A 1968, 2, 1441−1455.  doi: 10.1080/10601326808051910

    16. [16]

      Cho, E. C.; Jaeyoung, L. A., Cho, K. Role of bound water and hydrophobic interaction in phase transition of poly(N-isopropylacrylamide) aqueous solution. Macromolecules 2003, 36, 9929−9934.  doi: 10.1021/ma034851d

    17. [17]

      Graziano, G. On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutios. Int. J. Biol. Macromol. 2000, 27, 89−97.  doi: 10.1016/S0141-8130(99)00122-1

    18. [18]

      Sherman, E.; Haran, G. Coil-globule transition in the denatured state of a small protein. Proc. Natl. Acad. Sci. 2006, 103, 11539−11543.  doi: 10.1073/pnas.0601395103

    19. [19]

      Moghaddam, S. Z.; Thormann, E. Hofmeister effect on PNIPAM in bulk and at an interface: surface partitioning of weakly hydrated anions. Langmuir 2017, 33, 4806−4815.  doi: 10.1021/acs.langmuir.7b00953

    20. [20]

      Zhang, Y.; Furyk, S.; Sagle, L. B.; Cho, Y.; Bergbreiter, D. E.; Cremer, P. S. Effects of Hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J. Phys. Chem. C 2007, 111, 8916−8924.  doi: 10.1021/jp0690603

    21. [21]

      Wang, T.; Liu, G.; Zhang, G; Craig, V. S. J. Insights into ion specificity in water-methanol mixtures via the reentrant behavior of polymer. Langmuir 2012, 28, 1893−1899.  doi: 10.1021/la203979d

    22. [22]

      Liu, L.; Wang, T.; Liu, C.; Lin, K.; Ding, Y.; Liu, G.; Zhang, G. Mechanistic insights into amplification of specific ion effect in water-nonaqueous solvent mixtures. J. Phys. Chem. B 2013, 117, 2535−2544.  doi: 10.1021/jp311841m

    23. [23]

      Xu, Y.; Liu, G. Amplification of Hofmeister effect by alcohols. J. Phys. Chem. B 2014, 118, 7450−7456.  doi: 10.1021/jp504317j

    24. [24]

      Murdoch, T. J.; Humphreys, B. A.; Willott, J. D.; Gregory, K. P.; Prescott, S. W.; Nelson, A.; Wanless, E. J.; Webber, G. B. Specific anion effects on the internal structure of a poly(N-isopropylacrylamide) brush. Macromolecules 2016, 49, 6050−6060.  doi: 10.1021/acs.macromol.6b01001

    25. [25]

      Humphreys, B. A.; Willott, J. D.; Murdoch, T. J.; Webber, G. B.; Wanless, E. J. Specific ion modulated thermoresponse of poly(N-isopropylacrylamide) brushes. Phys. Chem. Chem. Phys. 2016, 18, 6037−6046.  doi: 10.1039/C5CP07468A

    26. [26]

      López-León, T.; Ortega-Vinuesa, J. L.; Bastos-González, D.; Elaissari, A. Thermally sensitive reversible microgels formed by poly(N-Isopropylacrylamide) charged chains: a Hofmeister effect study. J. Colloid Interf. Sci. 2014, 426, 300−307.  doi: 10.1016/j.jcis.2014.04.020

    27. [27]

      Wang, Y.; Zhang, Y.; Wu, X.; He, X.; L, W. Rapid facile in situ synthesis of the Au/poly(N-isopropylacrylamide) thermosensitive gels as temperature sensors. Mater. Lett. 2015, 143, 326−329.  doi: 10.1016/j.matlet.2014.12.132

    28. [28]

      Dionigi, C.; Piñeiro, Y., Riminucci, A.; Bañobre, M.; Rivas, J.; Dediu, V. Regulating the thermal response of PNIPAM hydrogels by controlling the adsorption of magnetite nanoparticles. Appl. Phys. A 2014, 114, 585−590.

    29. [29]

      Zha, L.; Banik, B.; Alexis, F. Stimulus responsive nanogels for drug delivery. Soft Matter 2011, 7, 5908−5916.  doi: 10.1039/c0sm01307b

    30. [30]

      Stile, R. A.; Burghardt, W. R.; Healy, K. E. Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 1999, 32, 7370−7379.  doi: 10.1021/ma990130w

    31. [31]

      Tanaka, T.; Fillmore D. J. Kinetics of swelling of gels. J. Chem. Phys. 1979, 70, 1214−1218.  doi: 10.1063/1.437602

    32. [32]

      Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 1995, 374, 240−242.  doi: 10.1038/374240a0

    33. [33]

      Fundueanu, G.; Constantin, M.; Bucatariu, S.; Ascenzi, P. Poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) thermo-responsive microgels as self-regulated drug delivery system. Macromol. Chem. Phys. 2016, 217, 2525−2533.  doi: 10.1002/macp.v217.22

    34. [34]

      Zhuo, R. X.; Li, W. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 152−159.  doi: 10.1002/(ISSN)1099-0518

    35. [35]

      Tang, Z.; Akiyama, Y.; Yamato, M.; Okano, T. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet. Biomaterials 2010, 31, 7435−7443.  doi: 10.1016/j.biomaterials.2010.06.040

    36. [36]

      Depa, K.; Strachota, A.; Šlouf, M.; Hromádková, J. Fast temperature-responsive nanocomposite PNIPAM hydrogels with controlled pore wall thickness: Force and rate of T-response. Eur. Polym. J. 2012, 48, 1997−2007.  doi: 10.1016/j.eurpolymj.2012.09.007

    37. [37]

      Wu, X. S.; Hoffman, A. S.; Yager, P. Synthesis and characterization of thermal reversible macroporous poly(N-isopropylacrylamide) hydrogels. J. Polym. Sci., Part A: Polym. Chem. 1992, 30, 2121−2129.  doi: 10.1002/pola.1992.080301005

    38. [38]

      Bonakdar, S.; Emami, S. H.; Shokrgozar, M. A.; Farhadi, A.; Ahmadi, S. A. H.; Amanzadeh, A. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mater. Sci. Eng. C 2010, 30, 636−643.  doi: 10.1016/j.msec.2010.02.017

    39. [39]

      Gottrup, F.; Ågren, M. S.; Karlsmark, T. Models for use in wound healing research: a survey focusing on in vitro and in vivo adult soft tissue. Wound Repair Regen. 2010, 8, 83−96.

    40. [40]

      Avella, M.; Cocca, M.; Errico, M.; Gentile, G. Biodegradable PVOH-based foams for packaging applications. J. Cell. Plast. 2011, 47, 271−281.  doi: 10.1177/0021955X11407401

    41. [41]

      Karimi, A.; Navidbakhsh, M.; Razaghi, R. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge. Mater. Sci. Eng. C 2014, 39, 253−258.  doi: 10.1016/j.msec.2014.03.009

    42. [42]

      Wan, W.; Bannerman, A. D.; Yang, L.; Mak, H. Poly(vinyl alcohol) cryogels for biomedical applications. Adv. Polym. Technol. 2014, 263, 283−321.  doi: 10.1007/978-3-319-05846-7

    43. [43]

      Karimi, A.; Navidbakhsh, M.; Beigzadeh, B. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge. Tissue Cell 2014, 46, 97−102.  doi: 10.1016/j.tice.2013.12.004

    44. [44]

      Giménez, V.; Mantecón, A.; Ronda, J. C.; Cádiz, V. Poly(vinyl alcohol) modified with carboxylic acid anhydrides: crosslinking through carboxylic groups. J. Appl. Polym. Sci. 1997, 65, 1643−1651.  doi: 10.1002/(ISSN)1097-4628

    45. [45]

      Breitenbach, A.; Pistel, K. F.; Kissel, T. Biodegradable comb polyesters. Part II. Erosion and release properties of poly(vinyl alcohol)-g-poly(lactic-co-glycolic acid). Polymer 2000, 41, 4781−4792.  doi: 10.1016/S0032-3861(99)00710-7

    46. [46]

      Pan, Y.; Shi, K.; Liu, Z.; Wang, W.; Peng, C.; Ji, X. Synthesis of a new kind of macroporous polyvinylalcohol formaldehyde based sponge and its water superabsorption performance. RSC Adv. 2015, 5, 78780−78789.  doi: 10.1039/C5RA11958H

    47. [47]

      Pan, Y.; Liu, Z.; Wang, W.; Peng, C.; Shi, K.; Ji, X. Highly efficient macroporous adsorbents for toxic metal ions in water system based on polyvinyl alcohol-formaldehyde sponges. J. Mater. Chem. A 2016, 4, 2537−2549.  doi: 10.1039/C5TA09295G

    48. [48]

      Pan, Y.; Li, B.; Liu, Z.; Yang, Z.; Yang, X.; Shi, K.; Li, W.; Peng, C.; Wang, W.; Ji, X. Superfast and reversible thermoresponse of poly(N-isopropylacrylamide) hydrogels grafted on macroporous poly(vinyl alcohol) formaldehyde sponges. ACS Appl. Mater. Interfaces 2018, 10, 32747−32759.  doi: 10.1021/acsami.8b12395

    49. [49]

      Chen, G.; Hoffman, A. S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 1995, 373, 49−52.  doi: 10.1038/373049a0

    50. [50]

      Mino, G.; Kaizerman, S. A new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J. Polym. Sci., Part A: Polym. Chem. 1958, 31, 242−243.

    51. [51]

      Duke, F. R.; Forist, A. A. The theory and kinetics of specific oxidation. III. The cerate-2,3-butanediol reaction in nitric acid solution. J. Am. Chem. Soc. 1949, 71, 2790−2792.  doi: 10.1021/ja01176a056

    52. [52]

      Xia, Y.; Yin, X.; Burke, N. A. D.; Stöver, H. D. H. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 2005, 38, 5937−5943.  doi: 10.1021/ma050261z

    53. [53]

      Otake, K.; Inomata, H.; Konno, M.; Saito, S. Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 1990, 23, 283−289.  doi: 10.1021/ma00203a049

    54. [54]

      Schild, H. G.; Tirrell, D. A. Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J. Phys. Chem. 1990, 94, 4352−4356.  doi: 10.1021/j100373a088

  • 加载中
    1. [1]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    2. [2]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    3. [3]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    4. [4]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    5. [5]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    6. [6]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    7. [7]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

    8. [8]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    9. [9]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    10. [10]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    11. [11]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    12. [12]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    13. [13]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    14. [14]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    15. [15]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    16. [16]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Feihu WuGengwen ChenKaitao LaiShiqing ZhangYingchao LiuRuijian LuoXiaocong WangPinzhi CaoYi YeJiarong LianJunle QuZhigang YangXiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884

    19. [19]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    20. [20]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

Metrics
  • PDF Downloads(0)
  • Abstract views(871)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return