Hofmeister Effect on Thermo-responsive Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges
- Corresponding author: Xiang-Ling Ji, xlji@ciac.ac.cn
Citation:
Kai Shi, Di Sha, Jiu-Duo Xu, Xu Yang, Bao-Long Wang, Yan-Xiong Pan, Xiang-Ling Ji. Hofmeister Effect on Thermo-responsive Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges[J]. Chinese Journal of Polymer Science,
;2020, 38(3): 257-267.
doi:
10.1007/s10118-019-2320-2
Hofmeister, F. Zur Lehre Von der Wirkung der Salze. Naunyn-Schmiedeberg's Arch. Pharmacol. 1888, 25, 1−30.
Zhang, Y.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505−14510.
doi: 10.1021/ja0546424
Frank, H. S.; Evans, M. W. Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 1945, 13, 507−532.
doi: 10.1063/1.1723985
Collins, K. D.; Washabaugh, M. W. The Hofmeister effect and the behavior of water at interfaces. Q. Rev. Biophys. 1985, 18, 323−422.
doi: 10.1017/S0033583500005369
Marcus, Y. Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 2009, 109, 1346−1370.
doi: 10.1021/cr8003828
Omta, A. W.; Kropman, M. F.; Woutersen, S.; Bakker, H. J. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 2003, 301, 347−349.
doi: 10.1126/science.1084801
Smith, J. D.; Saykally R. J.; Geissler P. L. The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 2007, 129, 13847−13856.
doi: 10.1021/ja071933z
Zangi, R. Can salting-in/salting-out ions be classified as chaotropes/kosmotropes? J. Phys. Chem. B 2010, 114, 643−650.
doi: 10.1021/jp909034c
Kunz, W.; Nostro P. L.; Ninham, B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 2004, 9, 1−18.
doi: 10.1016/j.cocis.2004.05.004
Tobias, D. J.; Hemminger, J. C. Getting specific about specific ion effects. Science 2008, 319, 1197−1198.
doi: 10.1126/science.1152799
Zhang, Y.; Cremer, P. S. Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem. 2010, 61, 63−83.
doi: 10.1146/annurev.physchem.59.032607.093635
Jungwirth, P.; Cremer, P. S. Beyond Hofmeister. Nat. Chem. 2014, 6, 261−263.
doi: 10.1038/nchem.1899
Broering, J. M.; Bommarius, A. S. Evaluation of Hofmeister effects on the kinetic stability of proteins. J. Phys. Chem. B 2005, 109, 20612−20619.
doi: 10.1021/jp053618+
Pelton, R. Temperature-sensitive aqueous microgels. Adv. Colloid Interf. Sci. 2000, 85, 1−33.
doi: 10.1016/S0001-8686(99)00023-8
Heskins, M.; Guillet, J. E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Part A 1968, 2, 1441−1455.
doi: 10.1080/10601326808051910
Cho, E. C.; Jaeyoung, L. A., Cho, K. Role of bound water and hydrophobic interaction in phase transition of poly(N-isopropylacrylamide) aqueous solution. Macromolecules 2003, 36, 9929−9934.
doi: 10.1021/ma034851d
Graziano, G. On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutios. Int. J. Biol. Macromol. 2000, 27, 89−97.
doi: 10.1016/S0141-8130(99)00122-1
Sherman, E.; Haran, G. Coil-globule transition in the denatured state of a small protein. Proc. Natl. Acad. Sci. 2006, 103, 11539−11543.
doi: 10.1073/pnas.0601395103
Moghaddam, S. Z.; Thormann, E. Hofmeister effect on PNIPAM in bulk and at an interface: surface partitioning of weakly hydrated anions. Langmuir 2017, 33, 4806−4815.
doi: 10.1021/acs.langmuir.7b00953
Zhang, Y.; Furyk, S.; Sagle, L. B.; Cho, Y.; Bergbreiter, D. E.; Cremer, P. S. Effects of Hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J. Phys. Chem. C 2007, 111, 8916−8924.
doi: 10.1021/jp0690603
Wang, T.; Liu, G.; Zhang, G; Craig, V. S. J. Insights into ion specificity in water-methanol mixtures via the reentrant behavior of polymer. Langmuir 2012, 28, 1893−1899.
doi: 10.1021/la203979d
Liu, L.; Wang, T.; Liu, C.; Lin, K.; Ding, Y.; Liu, G.; Zhang, G. Mechanistic insights into amplification of specific ion effect in water-nonaqueous solvent mixtures. J. Phys. Chem. B 2013, 117, 2535−2544.
doi: 10.1021/jp311841m
Xu, Y.; Liu, G. Amplification of Hofmeister effect by alcohols. J. Phys. Chem. B 2014, 118, 7450−7456.
doi: 10.1021/jp504317j
Murdoch, T. J.; Humphreys, B. A.; Willott, J. D.; Gregory, K. P.; Prescott, S. W.; Nelson, A.; Wanless, E. J.; Webber, G. B. Specific anion effects on the internal structure of a poly(N-isopropylacrylamide) brush. Macromolecules 2016, 49, 6050−6060.
doi: 10.1021/acs.macromol.6b01001
Humphreys, B. A.; Willott, J. D.; Murdoch, T. J.; Webber, G. B.; Wanless, E. J. Specific ion modulated thermoresponse of poly(N-isopropylacrylamide) brushes. Phys. Chem. Chem. Phys. 2016, 18, 6037−6046.
doi: 10.1039/C5CP07468A
López-León, T.; Ortega-Vinuesa, J. L.; Bastos-González, D.; Elaissari, A. Thermally sensitive reversible microgels formed by poly(N-Isopropylacrylamide) charged chains: a Hofmeister effect study. J. Colloid Interf. Sci. 2014, 426, 300−307.
doi: 10.1016/j.jcis.2014.04.020
Wang, Y.; Zhang, Y.; Wu, X.; He, X.; L, W. Rapid facile in situ synthesis of the Au/poly(N-isopropylacrylamide) thermosensitive gels as temperature sensors. Mater. Lett. 2015, 143, 326−329.
doi: 10.1016/j.matlet.2014.12.132
Dionigi, C.; Piñeiro, Y., Riminucci, A.; Bañobre, M.; Rivas, J.; Dediu, V. Regulating the thermal response of PNIPAM hydrogels by controlling the adsorption of magnetite nanoparticles. Appl. Phys. A 2014, 114, 585−590.
Zha, L.; Banik, B.; Alexis, F. Stimulus responsive nanogels for drug delivery. Soft Matter 2011, 7, 5908−5916.
doi: 10.1039/c0sm01307b
Stile, R. A.; Burghardt, W. R.; Healy, K. E. Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 1999, 32, 7370−7379.
doi: 10.1021/ma990130w
Tanaka, T.; Fillmore D. J. Kinetics of swelling of gels. J. Chem. Phys. 1979, 70, 1214−1218.
doi: 10.1063/1.437602
Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 1995, 374, 240−242.
doi: 10.1038/374240a0
Fundueanu, G.; Constantin, M.; Bucatariu, S.; Ascenzi, P. Poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) thermo-responsive microgels as self-regulated drug delivery system. Macromol. Chem. Phys. 2016, 217, 2525−2533.
doi: 10.1002/macp.v217.22
Zhuo, R. X.; Li, W. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 152−159.
doi: 10.1002/(ISSN)1099-0518
Tang, Z.; Akiyama, Y.; Yamato, M.; Okano, T. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet. Biomaterials 2010, 31, 7435−7443.
doi: 10.1016/j.biomaterials.2010.06.040
Depa, K.; Strachota, A.; Šlouf, M.; Hromádková, J. Fast temperature-responsive nanocomposite PNIPAM hydrogels with controlled pore wall thickness: Force and rate of T-response. Eur. Polym. J. 2012, 48, 1997−2007.
doi: 10.1016/j.eurpolymj.2012.09.007
Wu, X. S.; Hoffman, A. S.; Yager, P. Synthesis and characterization of thermal reversible macroporous poly(N-isopropylacrylamide) hydrogels. J. Polym. Sci., Part A: Polym. Chem. 1992, 30, 2121−2129.
doi: 10.1002/pola.1992.080301005
Bonakdar, S.; Emami, S. H.; Shokrgozar, M. A.; Farhadi, A.; Ahmadi, S. A. H.; Amanzadeh, A. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mater. Sci. Eng. C 2010, 30, 636−643.
doi: 10.1016/j.msec.2010.02.017
Gottrup, F.; Ågren, M. S.; Karlsmark, T. Models for use in wound healing research: a survey focusing on in vitro and in vivo adult soft tissue. Wound Repair Regen. 2010, 8, 83−96.
Avella, M.; Cocca, M.; Errico, M.; Gentile, G. Biodegradable PVOH-based foams for packaging applications. J. Cell. Plast. 2011, 47, 271−281.
doi: 10.1177/0021955X11407401
Karimi, A.; Navidbakhsh, M.; Razaghi, R. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge. Mater. Sci. Eng. C 2014, 39, 253−258.
doi: 10.1016/j.msec.2014.03.009
Wan, W.; Bannerman, A. D.; Yang, L.; Mak, H. Poly(vinyl alcohol) cryogels for biomedical applications. Adv. Polym. Technol. 2014, 263, 283−321.
doi: 10.1007/978-3-319-05846-7
Karimi, A.; Navidbakhsh, M.; Beigzadeh, B. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge. Tissue Cell 2014, 46, 97−102.
doi: 10.1016/j.tice.2013.12.004
Giménez, V.; Mantecón, A.; Ronda, J. C.; Cádiz, V. Poly(vinyl alcohol) modified with carboxylic acid anhydrides: crosslinking through carboxylic groups. J. Appl. Polym. Sci. 1997, 65, 1643−1651.
doi: 10.1002/(ISSN)1097-4628
Breitenbach, A.; Pistel, K. F.; Kissel, T. Biodegradable comb polyesters. Part II. Erosion and release properties of poly(vinyl alcohol)-g-poly(lactic-co-glycolic acid). Polymer 2000, 41, 4781−4792.
doi: 10.1016/S0032-3861(99)00710-7
Pan, Y.; Shi, K.; Liu, Z.; Wang, W.; Peng, C.; Ji, X. Synthesis of a new kind of macroporous polyvinylalcohol formaldehyde based sponge and its water superabsorption performance. RSC Adv. 2015, 5, 78780−78789.
doi: 10.1039/C5RA11958H
Pan, Y.; Liu, Z.; Wang, W.; Peng, C.; Shi, K.; Ji, X. Highly efficient macroporous adsorbents for toxic metal ions in water system based on polyvinyl alcohol-formaldehyde sponges. J. Mater. Chem. A 2016, 4, 2537−2549.
doi: 10.1039/C5TA09295G
Pan, Y.; Li, B.; Liu, Z.; Yang, Z.; Yang, X.; Shi, K.; Li, W.; Peng, C.; Wang, W.; Ji, X. Superfast and reversible thermoresponse of poly(N-isopropylacrylamide) hydrogels grafted on macroporous poly(vinyl alcohol) formaldehyde sponges. ACS Appl. Mater. Interfaces 2018, 10, 32747−32759.
doi: 10.1021/acsami.8b12395
Chen, G.; Hoffman, A. S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 1995, 373, 49−52.
doi: 10.1038/373049a0
Mino, G.; Kaizerman, S. A new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J. Polym. Sci., Part A: Polym. Chem. 1958, 31, 242−243.
Duke, F. R.; Forist, A. A. The theory and kinetics of specific oxidation. III. The cerate-2,3-butanediol reaction in nitric acid solution. J. Am. Chem. Soc. 1949, 71, 2790−2792.
doi: 10.1021/ja01176a056
Xia, Y.; Yin, X.; Burke, N. A. D.; Stöver, H. D. H. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 2005, 38, 5937−5943.
doi: 10.1021/ma050261z
Otake, K.; Inomata, H.; Konno, M.; Saito, S. Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 1990, 23, 283−289.
doi: 10.1021/ma00203a049
Schild, H. G.; Tirrell, D. A. Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J. Phys. Chem. 1990, 94, 4352−4356.
doi: 10.1021/j100373a088
Yong-Dan Zhao , Yidan Wang , Rongrong Wang , Lina Chen , Hengtong Zuo , Xi Wang , Jihong Qiang , Geng Wang , Qingxia Li , Canqi Ping , Shuqiu Zhang , Hao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Hui Gu , Mingyue Gao , Kuan Shen , Tianli Zhang , Junhao Zhang , Xiangjun Zheng , Xingmei Guo , Yuanjun Liu , Fu Cao , Hongxing Gu , Qinghong Kong , Shenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Yang Liu , Leilei Zhang , Kaixuan Liu , Ling-Ling Wu , Hai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759
Wenhao Wang , Siyuan Peng , Zhengwei Huang , Xin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134
Haixian Ren , Yuting Du , Xiaojing Yang , Fangjun Huo , Le Zhang , Caixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867
Yaxuan Jin , Chao Zhang , Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414
Sikai Wu , Xuefei Wang , Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Feihu Wu , Gengwen Chen , Kaitao Lai , Shiqing Zhang , Yingchao Liu , Ruijian Luo , Xiaocong Wang , Pinzhi Cao , Yi Ye , Jiarong Lian , Junle Qu , Zhigang Yang , Xiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737