Citation: Yan Song, Kai-Feng Chen, Jing-Jing Wang, Yuan Liu, Tao Qi, Guo Liang Li. Synthesis of Polyurethane/Poly(urea-formaldehyde) Double-shelled Microcapsules for Self-healing Anticorrosion Coatings[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 45-52. doi: 10.1007/s10118-019-2317-x shu

Synthesis of Polyurethane/Poly(urea-formaldehyde) Double-shelled Microcapsules for Self-healing Anticorrosion Coatings

  • Corresponding author: Guo Liang Li, glli@ipe.ac.cn
  • Received Date: 18 February 2019
    Revised Date: 28 May 2019
    Available Online: 3 September 2019

  • One-component, catalyst-free self-healing coatings with double-shelled polymer microcapsules have drawn considerable attention due to wide applications. In this work, the synthesis parameters of double-shelled polymer microcapsules and the mechanism of the self-healing process were systematically investigated. Apart from the chemical structure of the microcapsule shell, the shell thickness, the microcapsule size, and the core fraction could affect the self-healing anticorrosion properties. The synthesis parameters were further optimized in terms of the agitation rate, pH, weight ratio of core to shell, and temperature. Under these conditions, the microcapsule shell consisting of a rough surface formed by poly(urea-formaldehyde) and a smooth inner wall by polyurethane was prepared. The size of the microcapsules and core fraction were calculated to be approximately 30 μm and 75%, respectively. The self-healing anticorrosion coating incorporating as-synthesized microcapsules exhibited corrosion resistance in artificially scratched areas, which was further characterized by electrochemical impedance spectroscopy.
  • 加载中
    1. [1]

      Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R. Polymers with autonomous life-cycle control. Nature 2016, 540, 363−370.  doi: 10.1038/nature21002

    2. [2]

      Zhang, P.; Li, G. Advances in healing-on-demand polymers and polymer composites. Prog. Polym. Sci. 2016, 57, 32−63.  doi: 10.1016/j.progpolymsci.2015.11.005

    3. [3]

      Diesendruck, C. E.; Sottos, N. R.; Moore, J. S.; White, S. R. Biomimetic self-healing. Angew. Chem. Int. Ed. 2015, 54, 10428−10447.  doi: 10.1002/anie.201500484

    4. [4]

      Hughes, A. E.; Cole, I. S.; Muster, T. H.; Varley, R. J. Designing green, self-healing coatings for metal protection. NPG Asia Mater. 2010, 2, 143−151.  doi: 10.1038/asiamat.2010.136

    5. [5]

      Zhang, F.; Ju, P.; Pan, M.; Zhang, D.; Huang, Y.; Li, G.; Li, X. Self-healing mechanisms in smart protective coatings: a review. Corros. Sci. 2018, 144, 74−88.  doi: 10.1016/j.corsci.2018.08.005

    6. [6]

      Shchukin, D.; Mohwald, H. A coat of many functions. Science 2013, 341, 1458−1459.  doi: 10.1126/science.1242895

    7. [7]

      Wang, L. T.; Deng, L. P.; Zhang, D. W.; Qian, H. C.; Du, C. W.; Li, X. G.; Mol, J. M. C.; Terryn, H. A. Shape memory composite (SMC) self-healing coatings for corrosion protection. Prog. Org. Coat. 2016, 97, 261−268.  doi: 10.1016/j.porgcoat.2016.04.041

    8. [8]

      Qian, H. C.; Xu, D. K.; Du, C. W.; Zhang, D. W.; Li, X. G.; Huang, L. Y.; Deng, L. P.; Tu, Y. C.; Mol, J. M. C.; Terryn, H. A. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. J. Mater. Chem. A 2017, 5, 2355−2364.  doi: 10.1039/C6TA10903A

    9. [9]

      Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew. Chem. Int. Ed. 2018, 57, 13838−13842.  doi: 10.1002/anie.201807622

    10. [10]

      Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, Transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556.  doi: 10.1002/adma.v30.38

    11. [11]

      Liu, C. C.; Zhang, A. Y.; Ye, L.; Feng, Z. G. Self-healing biodegradable poly(urea-urethane) elastomers based on hydrogen bonding interactions. Chinese J. Polym. Sci. 2013, 31, 251−262.  doi: 10.1007/s10118-013-1211-1

    12. [12]

      Liu, X. Y.; Zhong, M.; Shi, F. K.; Xu, H.; Xie, X. M. Multi-bond network hydrogels with robust mechanical and self-healable properties. Chinese J. Polym. Sci. 2017, 35, 1253−1267.  doi: 10.1007/s10118-017-1971-0

    13. [13]

      Shchukin, D. G.; Möhwald, H. Surface-engineered nanocontainers for entrapment of corrosion inhibitors. Adv. Funct. Mater. 2007, 17, 1451−1458.  doi: 10.1002/adfm.v17:9

    14. [14]

      Zheludkevich, M. L.; Shchukin, D. G.; Yasakau, K. A.; Möhwald, H.; Ferreira, M. G. S. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem. Mater. 2007, 19, 402−411.  doi: 10.1021/cm062066k

    15. [15]

      Liu, X.; Zhang, H.; Wang, J.; Wang, Z.; Wang, S. Preparation of epoxy microcapsule based self-healing coatings and their behavior. Surf. Coat. Techol. 2012, 206, 4976−4980.  doi: 10.1016/j.surfcoat.2012.05.133

    16. [16]

      Song, Y. K.; Jo, Y. H.; Lim, Y. J.; Cho, S. Y.; Yu, H. C.; Ryu, B. C.; Lee, S. I.; Chung, C. M. Sunlight-induced self-healing of a microcapsule-type protective coating. ACS Appl. Mater. Interfaces 2013, 5, 1378−1384.  doi: 10.1021/am302728m

    17. [17]

      Chen, K.; Zhou, S.; Yang, S.; Wu, L. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules. Adv. Funct. Mater. 2015, 25, 1035−1041.  doi: 10.1002/adfm.v25.7

    18. [18]

      Suryanarayana, C.; Rao, K. C.; Kumar, D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog. Org. Coat. 2008, 63, 72−78.  doi: 10.1016/j.porgcoat.2008.04.008

    19. [19]

      Samadzadeh, M.; Boura, S. H.; Peikari, M.; Ashrafi, A.; Kasiriha, M. Tung oil: an autonomous repairing agent for self-healing epoxy coatings. Prog. Org. Coat. 2011, 70, 383−387.  doi: 10.1016/j.porgcoat.2010.08.017

    20. [20]

      Yang, J.; Keller, M. W.; Moore, J. S.; White, S. R.; Sottos, N. R. Microencapsulation of isocyanates for self-healing polymers. Macromolecules 2008, 41, 9650−9655.  doi: 10.1021/ma801718v

    21. [21]

      Huang, M.; Yang, J. Salt spray and EIS studies on HDI microcapsule-based self-healing anticorrosive coatings. Prog. Org. Coat. 2014, 77, 168−175.  doi: 10.1016/j.porgcoat.2013.09.002

    22. [22]

      Sun, D. W.; Zhang, H.; Tang, X. Z.; Yang, J. L. Water resistant reactive microcapsules for self-healing coatings in harsh environments. Polymer 2016, 91, 33−40.  doi: 10.1016/j.polymer.2016.03.044

    23. [23]

      Khun, N. W.; Sun, D. W.; Huang, M. X.; Yang, J. L.; Yue, C. Y. Wear resistant epoxy composites with diisocyanate-based self-healing functionality. Wear 2014, 313, 19−28.  doi: 10.1016/j.wear.2014.02.011

    24. [24]

      Wu, G.; An, J. L.; Sun, D. W.; Tang, X. Z.; Xiang, Y.; Yang, J. L. Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings. J. Mater. Chem. A 2014, 2, 11614−11620.  doi: 10.1039/C4TA01312C

    25. [25]

      Gite, V. V.; Tatiya, P. D.; Marathe, R. J.; Mahulikar, P. P.; Hundiwale, D. G. Microencapsulation of quinoline as a corrosion inhibitor in polyurea microcapsules for application in anticorrosive PU coatings. Prog. Org. Coat. 2015, 83, 11−18.  doi: 10.1016/j.porgcoat.2015.01.021

    26. [26]

      Lang, S.; Zhou, Q. Synthesis and characterization of poly(urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development. Prog. Org. Coat. 2017, 105, 99−110.  doi: 10.1016/j.porgcoat.2016.11.015

    27. [27]

      Sun, D.; An, J.; Wu, G.; Yang, J. Double-layered reactive microcapsules with excellent thermal and non-polar solvent resistance for self-healing coatings. J. Mater. Chem. A 2015, 3, 4435−4444.  doi: 10.1039/C4TA05339G

    28. [28]

      Caruso, M. M.; Blaiszik, B. J.; Jin, H.; Schelkopf, S. R.; Stradley, D. S.; Sottos, N. R.; White, S. R.; Moore, J. S. Robust, double-walled microcapsules for self-healing polymeric materials. ACS Appl. Mater. Interfaces 2010, 2, 1195−1199.  doi: 10.1021/am100084k

    29. [29]

      Ming, Y.; Hu, J.; Xing, J.; Wu, M.; Qu, J. Preparation of polyurea/melamine formaldehyde double-layered self-healing microcapsules and investigation on core fraction. J. Microencapsulation 2016, 33, 307−314.  doi: 10.1080/02652048.2016.1178352

    30. [30]

      Jobdeedamrong, A.; Jenjob, R.; Crespy, D. Encapsulation and release of essential oils in functional silica nanocontainers. Langmuir 2018, 34, 13235−13243.  doi: 10.1021/acs.langmuir.8b01652

    31. [31]

      Liu, G.; Xie, B.; Fu, D.; Wang, Y.; Fu, Q.; Wang, D. Preparation of nearly monodisperse microcapsules with controlled morphology by in situ polymerization of a shell layer. J. Mater. Chem. 2009, 19, 6605−6609.  doi: 10.1039/b901102a

    32. [32]

      Alizadegan, F.; Pazokifard, S.; Mirabedini, S. M.; Danaei, M.; Farnood, R. Polyurethane-based microcapsules containing reactive isocyanate compounds: study on preparation procedure and solvent replacement. Colloid. Surface. A 2017, 529, 750−759.  doi: 10.1016/j.colsurfa.2017.06.058

    33. [33]

      Rule, J. D.; Sottos, N. R.; White, S. R. Effect of microcapsule size on the performance of self-healing polymers. Polymer 2007, 48, 3520−3529.  doi: 10.1016/j.polymer.2007.04.008

    34. [34]

      Deng, W.; Guo, H. C.; Yu, W. L.; Kan, C. Y. Effects of shell composition, dosage and alkali type on the morphology of polymer hollow microspheres. Chinese J. Polym. Sci. 2018, 36, 43−48.  doi: 10.1007/s10118-018-2012-3

    35. [35]

      Shi, X. D.; Sun, P. J.; Gan, Z. H. Preparation of porous polylactide microspheres and their application in tissue engineering. Chinese J. Polym. Sci. 2018, 36, 712−719.  doi: 10.1007/s10118-018-2079-x

    36. [36]

      Yuan, Y.; Sun, P. J.; Shi, X. D.; Gan, Z. H.; Wang, F. S. Biodegradable microspheres with poly(N-isopropylacrylamide) Enriched surface: thermo-responsibility, biodegradation and drug release. Chinese J. Polym. Sci. 2015, 33, 1598−1605.  doi: 10.1007/s10118-015-1702-3

  • 加载中
    1. [1]

      Salim UllahJianliang ShenHong-Tao Xu . Innovative self-healing conductive organogel: Pioneering the future of electronics. Chinese Chemical Letters, 2025, 36(3): 110553-. doi: 10.1016/j.cclet.2024.110553

    2. [2]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    3. [3]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    4. [4]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    5. [5]

      Chunqing OuMeijia XiaoXinyue ZhengXianzhou HuangSuleixin YangYingying LengXiaowei LiuXiuqi LiangLinjiang SongYanjie YouShaohua YaoChangyang Gong . Programmable double-unlock nanocomplex self-supplies phenylalanine ammonia-lyase for precise phenylalanine deprivation of tumors. Chinese Chemical Letters, 2024, 35(8): 109275-. doi: 10.1016/j.cclet.2023.109275

    6. [6]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    7. [7]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    8. [8]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    9. [9]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    10. [10]

      Jiliang DengGuoliang ShiZhihang YeQuan XiaoXiaoting ZhangLei RenFangyu YangMiao Wang . Unveiling and swift diagnosing chronic wound healing with artificial intelligence assistance. Chinese Chemical Letters, 2025, 36(3): 110496-. doi: 10.1016/j.cclet.2024.110496

    11. [11]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    12. [12]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    13. [13]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    14. [14]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    15. [15]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    16. [16]

      Yunfen GaoLiying WangChufan ZhouYi ZhaoHai HuangJun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028

    17. [17]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    18. [18]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    19. [19]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    20. [20]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

Metrics
  • PDF Downloads(0)
  • Abstract views(775)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return