Citation: Wei-Wen Chi, Rong-Yuan Zhang, Ting Han, Jian Du, Hong-Kun Li, Wei-Jie Zhang, Yong-Fang Li, Ben Zhong Tang. Facile Synthesis of Functional Poly(methyltriazolylcarboxylate)s by Solvent- and Catalyst-free Butynoate-Azide Polycycloaddition[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 17-23. doi: 10.1007/s10118-019-2316-y shu

Facile Synthesis of Functional Poly(methyltriazolylcarboxylate)s by Solvent- and Catalyst-free Butynoate-Azide Polycycloaddition

  • The copper-catalyzed and metal-free azide-alkyne click polymerizations have become efficient tools for polymer synthesis. However, the 1,3-dipolar polycycloadditions between internal alkynes and azides are rarely employed to construct functional polymers. Herein, the polycycloadditions of dibutynoate ( 1 ) and tetraphenylethene-containing diazides ( 2 ) were carried out at 100 °C for 12 h under solvent- and catalyst-free conditions, producing soluble poly(methyltriazolylcarboxylate)s (PMTCs) with high molecular weights in high yields. The resultant polymers were thermally stable with 5% weight loss temperatures up to 377 °C. The PMTCs showed aggregation-induced emission (AIE) properties. They could work as fluorescent sensors for detecting explosive with high sensitivity, and generate two-dimensional fluorescent photopatterns with high resolution. Furthermore, their triazolium salts could be utilized for cell-imaging applications.
  • 加载中
    1. [1]

      Liu, Y.; Qin, A.; Tang, B. Z. Polymerizations based on triple-bond building blocks. Prog. Polym. Sci. 2018, 78, 92−138.  doi: 10.1016/j.progpolymsci.2017.09.004

    2. [2]

      Liu, J.; Lam, J. W. Y.; Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 2009, 109, 5799−5807.  doi: 10.1021/cr900149d

    3. [3]

      Huisgen R. in 1,3-Dipolar cycloaddition chemistry. (Ed.: A. Padwa) Wiley, New York, 1984.

    4. [4]

      Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective " ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596−2599.  doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057−3064.  doi: 10.1021/jo011148j

    6. [6]

      Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A. S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 2016, 116, 3086−3240.  doi: 10.1021/acs.chemrev.5b00408

    7. [7]

      Golas, P. L.; Matyjaszewski, K. Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem. Soc. Rev. 2010, 39, 1338−1354.  doi: 10.1039/B901978M

    8. [8]

      Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Recent advances in alkyne-based click polymerizations. Polym. Chem. 2018, 9, 2853−2867.  doi: 10.1039/C7PY02047C

    9. [9]

      Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997−4022.  doi: 10.1039/C4CS00224E

    10. [10]

      Li, H.; Qin, A.; Sun, J. Z.; Tang, B. Z. Azide-alkyne click polymerization: an update. Chinese J. Polym. Sci. 2012, 30, 1−15.  doi: 10.1007/s10118-012-1098-2

    11. [11]

      Qin, A.; Lam, J. W. Y.; Tang, B. Z. Click polymerization: progresses, challenges, and opportunities. Macromolecules 2010, 43, 8693−8702.  doi: 10.1021/ma101064u

    12. [12]

      Becer, C. R.; Hoogenboom, R.; Schubert, U. S. Click chemistry beyond metal-catalyzed cycloaddition. Angew. Chem. Int. Ed. 2009, 48, 4900−4908.  doi: 10.1002/anie.v48:27

    13. [13]

      Usluer, Ö.; Abbas, M.; Wantz, G.; Vignau, L.; Hirsch, L.; Grana, E.; Brochon, C.; Cloutet, E.; Hadziioannou, G. Metal residues in semiconducting polymers: impact on the performance of organic electronic devices. ACS Macro Lett. 2014, 3, 1134−1138.  doi: 10.1021/mz500590d

    14. [14]

      Li, B.; Huang, D.; Qin, A.; Tang, B. Z. Progress on catalytic systems used in click polymerization. Macromol. Rapid Commun. 2018, 39, 1800098.  doi: 10.1002/marc.v39.11

    15. [15]

      Qin, A.; Liu, Y.; Tang, B. Z. Regioselective metal-free click polymerization of azides and alkynes. Macromol. Chem. Phys. 2015, 216, 818−828.  doi: 10.1002/macp.v216.8

    16. [16]

      Ni, B.; Wang, C.; Wu, H.; Pei, J.; Ma, Y. Copper-free cycloaddition of azide and alkyne in crystalline state facilitated by arene-perfluoroarene interactions. Chem. Commun. 2010, 46, 782−784.  doi: 10.1039/B912337G

    17. [17]

      Meng, X.; Chen, H.; Xu, S.; Ma, Y. Metal-free 1,3-dipolar cycloaddition polymerization via prearrangement of azide and alkyne in the solid state. CrystEngComm 2014, 16, 9983−9986.  doi: 10.1039/C4CE01690D

    18. [18]

      Pathigoolla, A.; Gonnade, R. G.; Sureshan, K. M. Topochemical click reaction: spontaneous self-stitching of a monosaccharide to linear oligomers through lattice-controlled azide-alkyne cycloaddition. Angew. Chem. Int. Ed. 2012, 51, 4362−4366.  doi: 10.1002/anie.201201023

    19. [19]

      Krishnan, B. P.; Sureshan, K. M. Topochemical azide-alkyne cycloaddition reaction in gels: size-tunable synthesis of triazole-linked polypeptides. J. Am. Chem. Soc. 2017, 139, 1584−1589.  doi: 10.1021/jacs.6b11549

    20. [20]

      Sandmannn, B.; Happ, B.; Vitz, J.; Paulus, R. M.; Hager, M. D.; Burtscher, P.; Moszner, N.; Schubert, U. S. Metal-free cycloaddition of internal alkynes and multifunctional azides under solvent-free conditions. Macromol. Chem. Phys. 2014, 215, 1603−1608.  doi: 10.1002/macp.v215.17

    21. [21]

      Pretzel, D.; Sandmann, B.; Hartlieb, M.; Vitz, J.; Hölzer, S.; Fritz, N.; Moszner, N.; Schubert, U. S. Biological evaluation of 1,2,3-triazole-based polymers for potential applications as hard tissue material. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1843−1847.  doi: 10.1002/pola.v53.16

    22. [22]

      Wei, Q.; Deng, H. Q.; Cai, Y. B.; Lam, J. W. Y.; Li, J.; Sun, J. Z.; Gao, M.; Qin, A.; Tang, B. Z. Efficient polymerization of azide and active internal alkynes. Macromol. Rapid Commun. 2012, 33, 1356−1361.  doi: 10.1002/marc.201200212

    23. [23]

      Yuan, W.; Chi, W.; Liu, R.; Li, H.; Li, Y.; Tang, B. Z. Synthesis of poly(phenyltriazolylcarboxylate)s with aggregation-induced emission characteristics by metal-free 1,3-dipolar polycycloaddition of phenylpropiolate and azides. Macromol. Rapid Commun. 2017, 38, 1600745.  doi: 10.1002/marc.v38.5

    24. [24]

      Yuan, W.; Chi, W.; Han, T.; Du, J.; Li, H.; Li, Y.; Tang, B. Z. Metal-free phenylpropiolate-azide polycycloaddition: efficient synthesis of functional poly(phenyltriazolylcarboxylate)s. Polym. Chem. 2018, 9, 5215−5223.  doi: 10.1039/C8PY01041B

    25. [25]

      Chi, W.; Yuan, W.; Du, J.; Han, T.; Li, H.; Li, Y.; Tang, B. Z. Construction of functional hyperbranched poly(phenyltriazolylcarboxylate)s by metal-free phenylpropiolate-azide polycycloaddition. Macromol. Rapid Commun. 2018, 39, 1800604.  doi: 10.1002/marc.v39.24

    26. [26]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 2015, 115, 11718−11940.

    27. [27]

      Feng, G.; Liu, B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc. Chem. Res. 2018, 51, 1404−1414.  doi: 10.1021/acs.accounts.8b00060

    28. [28]

      Mei, J.; Huang, Y.; Tian, H. Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl. Mater. Interfaces 2018, 10, 12217−12261.  doi: 10.1021/acsami.7b14343

    29. [29]

      Ding, S.; Liu, M.; Hong, Y. Biothiol-specific fluorescent probes with aggregation-induced emission characteristics. Sci. China Chem. 2018, 61, 882−891.  doi: 10.1007/s11426-018-9300-5

    30. [30]

      Ma, S.; Ma, L.; Han, W.; Jiang, S.; Xu, B.; Tian, W. Progress in 9,10-distyrylanthracene derivatives with aggregation-induced emission. Sci. Sin. Chim. 2018, 48, 683−697.  doi: 10.1360/N032018-00009

    31. [31]

      Hu, Y. B.; Lam, J. W. Y.; Tang, B. Z. Recent progress in AIE-active polymers. Chinese J. Polym. Sci. 2019, 37, 289−301.  doi: 10.1007/s10118-019-2221-4

    32. [32]

      Yang, Z.; Chi, Z.; Mao, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Aldred, M. P.; Chi, Z. Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater. Chem. Front. 2018, 2, 861−890.  doi: 10.1039/C8QM00062J

    33. [33]

      Liu, M.; Gao, P.; Wan, Q.; Deng, F.; Wei, Y.; Zhang, X. Recent advances and future prospects of aggregation-induced emission carbohydrate polymers. Macromol. Rapid Commun. 2017, 38, 1600575.  doi: 10.1002/marc.v38.10

    34. [34]

      Wu, Y.; Qin, A.; Tang, B. Z. AIE-active polymers for explosive detection. Chinese J. Polym. Sci. 2017, 35, 141−154.  doi: 10.1007/s10118-017-1882-0

    35. [35]

      Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000, 404, 53−56.  doi: 10.1038/35003523

    36. [36]

      Han, T.; Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. Monomer stoichiometry imbalance-promoted formation of multisubstituted polynaphthalenes by palladium-catalyzed polycouplings of aryl iodides and internal diynes. Polym. Chem. 2018, 9, 885−893.  doi: 10.1039/C7PY01926B

    37. [37]

      Dimitrov-Raytchev, P.; Beghdadi, S.; Serghei, A.; Drockenmuller, E. Main-chain 1,2,3-triazolium-based poly(ionic liquid)s issued from AB + AB click chemistry polyaddition. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 34−38.  doi: 10.1002/pola.26326

    38. [38]

      Obadia, M. M.; Jourdain, A.; Serghei, A.; Ikeda, T.; Drockenmuller, E. Cationic and dicationic 1,2,3-triazolium-based poly(ethylene glycol ionic liquid)s. Polym. Chem. 2017, 8, 910−917.  doi: 10.1039/C6PY02030E

    39. [39]

      Jourdain, A.; Antoniuk, I.; Serghei, A.; Espuche, E.; Drockenmuller, E. 1,2,3-Triazolium-based linear ionic polyurethanes. Polym. Chem. 2017, 8, 5148−5156.  doi: 10.1039/C7PY00406K

    40. [40]

      Tan, W.; Li, Q.; Dong, F.; Qiu, S.; Zhang, J.; Guo, Z. Novel 1,2,3-triazolium-functionalized starch derivatives: synthesis, characterization, and evaluation of antifungal property. Carbohydr. Polym. 2016, 160, 163−171.

  • 加载中
    1. [1]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    2. [2]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    3. [3]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    4. [4]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    5. [5]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    6. [6]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    7. [7]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    8. [8]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    9. [9]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    10. [10]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    11. [11]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    12. [12]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    13. [13]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    14. [14]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    15. [15]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    16. [16]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    17. [17]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    18. [18]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    19. [19]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    20. [20]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

Metrics
  • PDF Downloads(0)
  • Abstract views(777)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return