Citation: Kai Liu, Chun-Ming Yang, Bo-Ming Yang, Lan Zhang, Wen-Chao Huang, Xiao-Ping Ouyang, Fu-Gang Qi, Nie Zhao, Feng-Gang Bian. Directed Self-assembly of Vertical PS-b-PMMA Nanodomains Grown on Multilayered Polyelectrolyte Films[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 92-99. doi: 10.1007/s10118-019-2315-z shu

Directed Self-assembly of Vertical PS-b-PMMA Nanodomains Grown on Multilayered Polyelectrolyte Films

  • Corresponding author: Nie Zhao, zhaonie@xtu.edu.cn Feng-Gang Bian, bianfenggang@sinap.ac.cn
  • ‡: These authors contributed equally to this work
  • Received Date: 20 May 2019
    Revised Date: 11 June 2019
    Available Online: 19 September 2019

  • Layer-by-layer polyelectrolyte self-assembly, a common method for preparing high-quality ultra-thin films, was employed to direct the self-assembly behavior of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer for the first time. Differing from the previous neutral polymer brushes anchored to silicon substrates via chemical modification, polyelectrolyte multilayers (PEMs) were anchored by electrostatic interaction and provided a stable, smooth, and neutral interface. In the present study, PS-b-PMMA was deposited on poly(acrylamide hydrochloride)/poly(acrylic acid) (PAH/PAA) PEMs prepared by layer-by-layer self-assembly to successfully yield vertical nanodomains after thermal annealing. Seven layered PEMs revealed an excellent, smooth surface, with a low roughness of 0.6 nm. The periodic structure with interlamellar spacing of 47 nm was determined by grazing-incidence small-angle X-ray scattering (GISAXS). The morphology of the PS-b-PMMA nanodomains depended on the polyanion-to-polycation concentration ratio, which is related to the interaction between the block copolymer and the substrate. Our results demonstrate that layer-by-layer self-assembly is a helpful method for the phase separation of block polymers and the fabrication of vertical, ordered nanodomains.
  • 加载中
    1. [1]

      Segalman, R. A. Patterning with block copolymer thin films. Mater. Sci. Eng. R 2005, 48, 191−226.  doi: 10.1016/j.mser.2004.12.003

    2. [2]

      Bai, W.; Ross, C. Functional nanostructured materials based on self-assembly of block copolymers. MRS Bull. 2016, 41, 100−107.  doi: 10.1557/mrs.2016.1

    3. [3]

      Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G. Block copolymer lithography. Macromolecules 2013, 47, 2−12.

    4. [4]

      Stoykovich, M. P.; Kang, H.; Daoulas, K. C.; Liu, G.; Liu, C. C.; de Pablo, J. J.; Müller, M.; Nealey, P. F. Directed self-assembly of block copolymers for nanolithography: fabrication of isolated features and essential integrated circuit geometries. ACS Nano 2007, 1, 168−175.  doi: 10.1021/nn700164p

    5. [5]

      Urbas, A. M.; Maldovan, M.; DeRege, P.; Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 2002, 14, 1850−1853.  doi: 10.1002/adma.200290018

    6. [6]

      Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 2000, 12, 812−814.  doi: 10.1002/(ISSN)1521-4095

    7. [7]

      Phillip, W. A.; O'Neill, B.; Rodwogin, M.; Hillmyer, M. A.; Cussler, E. L. Self-assembled block copolymer thin films as water filtration membranes. ACS Appl. Mater. Interfaces 2010, 2, 847−853.  doi: 10.1021/am900882t

    8. [8]

      Jackson, E. A.; Hillmyer, M. A. Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano 2010, 4, 3548−3553.  doi: 10.1021/nn1014006

    9. [9]

      Green, P. F.; Christensen, T. M.; Russell, T. P.; Jerome, R. Equilibrium surface composition of diblock copolymers. J. Chem. Phys. 1990, 92, 1478−1482.  doi: 10.1063/1.458106

    10. [10]

      Russell, T.; Menelle, A.; Anastasiadis, S.; Satija, S.; Majkrzak, C. Unconventional morphologies of symmetric, diblock copolymers due to film thickness constraints. Macromolecules 1991, 24, 6263−6269.  doi: 10.1021/ma00023a032

    11. [11]

      Peng, J.; Kim, D. H.; Knoll, W.; Xuan, Y.; Li, B.; Han, Y. Morphologies in solvent-annealed thin films of symmetric diblock copolymer. J. Chem. Phys. 2006, 125, 064702.  doi: 10.1063/1.2219446

    12. [12]

      Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 2126−2129.  doi: 10.1126/science.290.5499.2126

    13. [13]

      Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Nanoscopic templates from oriented block copolymer films. Adv. Mater. 2000, 12, 787−791.  doi: 10.1002/(ISSN)1521-4095

    14. [14]

      Kim, E.; Ahn, H.; Park, S.; Lee, H.; Lee, M.; Lee, S.; Kim, T.; Kwak, E. A.; Lee, J. H.; Lei, X.; Huh, J.; Bang, J.; Lee, B.; Ryu, D. Y. Directed assembly of high molecular weight block copolymers: highly ordered line patterns of perpendicularly oriented lamellae with large periods. ACS Nano 2013, 7, 1952−1960.  doi: 10.1021/nn3051264

    15. [15]

      Kim, K.; Park, S.; Kim, Y.; Bang, J.; Park, C.; Ryu, D. Y. Optimized solvent vapor annealing for long-range perpendicular lamellae in PS-b-PMMA films. Macromolecules 2016, 49, 1722−1730.  doi: 10.1021/acs.macromol.5b02188

    16. [16]

      Edwards, E. W.; Montague, M. F.; Solak, H. H.; Hawker, C. J.; Nealey, P. F. Precise control over molecular dimensions of block-copolymer domains using the interfacial energy of chemically nanopatterned substrates. Adv. Mater. 2004, 16, 1315−1319.  doi: 10.1002/(ISSN)1521-4095

    17. [17]

      Liu, C. C.; Ramírez-Hernández, A.; Han, E.; Craig, G. S.; Tada, Y.; Yoshida, H.; Kang, H.; Ji, S.; Gopalan, P.; De Pablo, J. J. Chemical patterns for directed self-assembly of lamellae-forming block copolymers with density multiplication of features. Macromolecules 2013, 46, 1415−1424.  doi: 10.1021/ma302464n

    18. [18]

      Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Controlling polymer-surface interactions with random copolymer brushes. Science 1997, 275, 1458−1460.  doi: 10.1126/science.275.5305.1458

    19. [19]

      Ji, S.; Liu, G.; Zheng, F.; Craig, G. S.; Himpsel, F.; Nealey, P. F. Preparation of neutral wetting brushes for block copolymer films from homopolymer blends. Adv. Mater. 2008, 20, 3054−3060.  doi: 10.1002/adma.v20:16

    20. [20]

      Ferrarese, L. F.; Giammaria, T. J.; Seguini, G.; Vita, F.; Francescangeli, O.; Sparnacci, K.; Antonioli, D.; Gianotti, V.; Laus, M.; Perego, M. Fine tuning of lithographic masks through thin films of PS-b-PMMA with different molar mass by rapid thermal processing. ACS Appl. Mater. Interfaces 2014, 6, 7180−7188.  doi: 10.1021/am5003074

    21. [21]

      Lupi, F.; Giammaria, T. J.; Ceresoli, M.; Seguini, G.; Sparnacci, K.; Antonioli, D.; Gianotti, V.; Laus, M.; Perego, M. Rapid thermal processing of self-assembling block copolymer thin films. Nanotechnology 2013, 24, 315601.  doi: 10.1088/0957-4484/24/31/315601

    22. [22]

      Jeong, U.; Kim, H. C.; Rodriguez, R. L.; Tsai, I. Y.; Stafford, C. M.; Kim, J. K.; Hawker, C. J.; Russell, T. P. Asymmetric block copolymers with homopolymers: routes to multiple length scale nanostructures. Adv. Mater. 2002, 14, 274−276.  doi: 10.1002/(ISSN)1521-4095

    23. [23]

      Yeol, R. D.; Kyusoon, S.; Eric, D.; Hawker, C. J.; Russell, T. P. A generalized approach to the modification of solid surfaces. Science 2005, 308, 236−239.  doi: 10.1126/science.1106604

    24. [24]

      Xu, T.; Zhu, Y.; Gido, S. P.; Russel, T. P. Electric field alignment of symmetric diblock copolymer thin films. Macromolecules 2004, 37, 2625−2629.  doi: 10.1021/ma035805g

    25. [25]

      Xiang, H.; Lin, Y.; Russell, T. P. Electrically induced patterning in block copolymer films. Macromolecules 2004, 37, 5358−5363.  doi: 10.1021/ma049888s

    26. [26]

      Xuan, Y.; Peng, J.; Cui, L.; Wang, H.; Li, B.; Han, Y. Morphology development of ultrathin symmetric diblock copolymer film via solvent vapor treatment. Macromolecules 2004, 37, 7301−7307.  doi: 10.1021/ma0497761

    27. [27]

      Park, S.; Kim, B.; Xu, J.; Hofmann, T.; Ocko, B. M.; Russell, T. P. Lateral ordering of cylindrical microdomains under solvent vapor. Macromolecules 2009, 42, 1278−1284.  doi: 10.1021/ma802480s

    28. [28]

      Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997, 277, 1232−1237.  doi: 10.1126/science.277.5330.1232

    29. [29]

      Bertrand, P.; Jonas, A.; Laschewsky, A.; Legras, R. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Commun. 2000, 21, 319−348.  doi: 10.1002/(SICI)1521-3927(20000401)21:7<319::AID-MARC319>3.0.CO;2-7

    30. [30]

      Ghostine, R. A.; Jisr, R. M.; Lehaf, A.; Schlenoff, J. B. Roughness and salt annealing in a polyelectrolyte multilayer. Langmuir 2013, 29, 11742−11750.  doi: 10.1021/la401632x

    31. [31]

      Shiratori, S. S.; Rubner, M. F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 2000, 33, 4213−4219.  doi: 10.1021/ma991645q

    32. [32]

      Diamanti, E.; Muzzio, N.; Gregurec, D.; Irigoyen, J.; Pasquale, M.; Azzaroni, O.; Brinkmann, M.; Moya, S. E. Impact of thermal annealing on wettability and antifouling characteristics of alginate poly-L-lysine polyelectrolyte multilayer films. Colloid. Surf. B 2016, 145, 328−337.  doi: 10.1016/j.colsurfb.2016.05.013

    33. [33]

      Gregurec, D.; Olszyna, M.; Politakos, N.; Yate, L.; Dahne, L.; Moya, S. E. Stability of polyelectrolyte multilayers in oxidizing media: a critical issue for the development of multilayer based membranes for nanofiltration. Colloid. Polym. Sci. 2014, 293, 381−388.

    34. [34]

      Chiarelli, P. A.; Johal, M. S.; Casson, J. L.; Roberts, J. B.; Robinson, J. M.; Wang, H. L. Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly. Adv. Mater. 2001, 13, 1167−1171.  doi: 10.1002/(ISSN)1521-4095

    35. [35]

      Cho, J.; Char, K.; Hong, J. D.; Lee, K. B. Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv. Mater. 2001, 13, 1076−1078.  doi: 10.1002/1521-4095(200107)13:14<1076::AID-ADMA1076>3.0.CO;2-M

    36. [36]

      Ferrarese Lupi, F.; Giammaria, T. J.; Seguini, G.; Laus, M.; Dubcek, P.; Pivac, B.; Bernstorff, S.; Perego, M. GISAXS analysis of the in-depth morphology of thick PS-b-PMMA films. ACS Appl. Mater. Interfaces 2017, 9, 11054−11063.  doi: 10.1021/acsami.7b01366

    37. [37]

      Ryu, D. Y.; Wang, J. Y.; Lavery, K. A.; Drockenmuller, E.; Satija, S. K.; Hawker, C. J.; Russell, T. P. Surface modification with cross-linked random copolymers: minimum effective thickness. Macromolecules 2007, 40, 4296−4300.  doi: 10.1021/ma062939w

    38. [38]

      Lee, W.; Park, S.; Kim, Y.; Sethuraman, V.; Rebello, N.; Ganesan, V.; Ryu, D. Y. Effect of grafting density of random copolymer brushes on perpendicular alignment in PS-b-PMMA thin films. Macromolecules 2017, 50, 5858−5866.  doi: 10.1021/acs.macromol.7b00133

    39. [39]

      Majewski, P. W.; Yager, K. G. Rapid ordering of block copolymer thin films. J. Phys. Condens. Matter. 2016, 28, 403002.  doi: 10.1088/0953-8984/28/40/403002

    40. [40]

      Ida, T.; Ando, M.; Toraya, H. Extended pseudo-Voigt function for approximating the Voigt profile. J. Appl. Crystallogr. 2000, 33, 1311−1316.  doi: 10.1107/S0021889800010219

    41. [41]

      Scardi, P.; Leoni, M.; Delhez, R. Line broadening analysis using integral breadth methods: a critical review. J. Appl. Crystallogr. 2004, 37, 381−390.  doi: 10.1107/S0021889804004583

    42. [42]

      Langford, J. I.; Wilson, A. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 1978, 11, 102−113.  doi: 10.1107/S0021889878012844

    43. [43]

      Smilgies, D. M. Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J. Appl. Crystallogr. 2009, 42, 1030−1034.  doi: 10.1107/S0021889809040126

    44. [44]

      Schmitt, J.; Gruenewald, T.; Decher, G.; Pershan, P. S.; Kjaer, K.; Loesche, M. Internal structure of layer-by-layer adsorbed polyelectrolyte films: a neutron and X-ray reflectivity study. Macromolecules 1993, 26, 7058−7063.  doi: 10.1021/ma00077a052

    45. [45]

      Park, S. M.; Craig, G. S.; La, Y. H.; Solak, H. H.; Nealey, P. F. Square arrays of vertical cylinders of PS-b-PMMA on chemically nanopatterned surfaces. Macromolecules 2007, 40, 5084−5094.  doi: 10.1021/ma0702344

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    7. [7]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    8. [8]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    9. [9]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    10. [10]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    11. [11]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    12. [12]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    17. [17]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    18. [18]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    19. [19]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    20. [20]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

Metrics
  • PDF Downloads(0)
  • Abstract views(743)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return