Citation: Li-Rong Zheng, Liang Hong. Combining Neutron Scattering, Deuteration Technique, and Molecular Dynamics Simulations to Study Dynamics of Protein and Its Surface Water Molecules[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1083-1091. doi: 10.1007/s10118-019-2312-2 shu

Combining Neutron Scattering, Deuteration Technique, and Molecular Dynamics Simulations to Study Dynamics of Protein and Its Surface Water Molecules

  • Corresponding author: Liang Hong, hongl3liang@sjtu.edu.cn
  • Received Date: 14 April 2019
    Revised Date: 18 May 2019
    Available Online: 2 September 2019

  • Protein internal dynamics is essential for its function. Exploring the internal dynamics of protein molecules as well as its connection to protein structure and function is a central topic in biophysics. However, the atomic motions in protein molecules exhibit a great degree of complexities. These complexities arise from the complex chemical composition and superposition of different types of atomic motions on the similar time scales, and render it challenging to explicitly understand the microscopic mechanism governing protein motions, functions, and their connections. Here, we demonstrate that, by using neutron scattering, molecular dynamics simulation, and deuteration technique, one can address this challenge to a large extent.
  • 加载中
    1. [1]

      Johs, A.; Harwood, I. M.; Parks, J. M.; Nauss, R. E.; Smith, J. C.; Liang, L.; Miller, S. M. Structural characterization of intramolecular Hg2+ transfer between flexibly linked domains of mercuric ion reductase. J. Mol. Biol. 2011, 413 (3), 639-656.  doi: 10.1016/j.jmb.2011.08.042

    2. [2]

      Martin, G. S. The hunting of the Src. Nat. Rev. Mol. Cell. Biol. 2001, 2 (5), 47-47.  doi: 10.1038/35073094

    3. [3]

      Banks, R. D.; Blake, C. C.; Evans, P. R.; Haser, R., .; Rice, D. W.; Hardy, G. W.; Merrett, M., .; Phillips, A. W. Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Nature 1979, 279 (5716), 773-777.  doi: 10.1038/279773a0

    4. [4]

      Rupley, J. A.; Careri, G. Protein hydration and function. In Advances in protein chemistry. Elsevier, 1991, Vol. 41, p. 37−172

    5. [5]

      Bellissent-Funel, M. C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, P.; Sterpone, F.; Van, d. S. D.; Xu, Y.; Garcia, A. E. Water determines the structure and dynamics of proteins. Chem. Rev. 2016, 116 (13), 7673-7679.  doi: 10.1021/acs.chemrev.5b00664

    6. [6]

      Hans, F.; Guo, C.; Joel, B.; Fenimore, P. W.; Helén, J.; Mcmahon, B. H.; Stroe, I. R.; Jan, S.; Young, R. D. A unified model of protein dynamics. Proc. Natl. Acad. Sci. USA 2009, 106 (13), 5129-5134.  doi: 10.1073/pnas.0900336106

    7. [7]

      Biman, B. Water dynamics in the hydration layer around proteins and micelles. Chem. Rev. 2005, 105 (9), 3197-3219.  doi: 10.1021/cr020661+

    8. [8]

      Philip, B. Water and life: seeking the solution. Nature 2005, 436 (7054), 1084.  doi: 10.1038/4361084a

    9. [9]

      Pocker, Y. Water in enzyme reactions: Biophysical aspects of hydration-dehydration processes. CMLS, Cell. Mol. Life Sci. 2000, 57 (7), 1008-1017.  doi: 10.1007/PL00000741

    10. [10]

      Jian, P.; Todd, S.; Ning, Z.; Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 2011, 475 (7356), 353-358.  doi: 10.1038/nature10238

    11. [11]

      Pawlus, S.; Khodadadi, S.; Sokolov, A. P. Conductivity in hydrated proteins: no signs of the fragile-to-strong crossover. Phys. Rev. Lett. 2008, 100 (10), 2197-2204.

    12. [12]

      Otting, G.; Liepinsh, E.; Wuthrich, K. Protein hydration in aqueous solution. Science 1991, 254 (5034), 974-980.  doi: 10.1126/science.1948083

    13. [13]

      Valeria, C. N.; Martina, H. New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J. Am. Chem. Soc. 2014, 136 (37), 12800-12807.  doi: 10.1021/ja504441h

    14. [14]

      Yang, J.; Wang, Y.; Wang, L.; Zhong, D. Mapping hydration dynamics around a β-barrel protein. J. Am. Chem. Soc. 2017, 139 (12), 4399-4408.  doi: 10.1021/jacs.6b12463

    15. [15]

      Chen, C.; Stevens, B.; Kaur, J.; Cabral, D.; Liu, H.; Wang, Y.; Zhang, H.; Rosenblum, G.; Smilansky, Z.; Goldman, Y. E. Single-molecule fluorescence measurements of ribosomal translocation dynamics. Mol. Cell 2011, 42 (3), 367-377.  doi: 10.1016/j.molcel.2011.03.024

    16. [16]

      Hong, L.; Jain, N.; Cheng, X.; Bernal, A.; Tyagi, M.; Smith, J. C. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering. Sci. Adv. 2016, 2 (10), e1600886.  doi: 10.1126/sciadv.1600886

    17. [17]

      Hong, L.; Sharp, M. A.; Poblete, S.; Biehl, R.; Zamponi, M.; Szekely, N.; Appavou, M. S.; Winkler, R. G.; Nauss, R. E.; Johs, A.; Parks, J. M.; Yi, Z.; Cheng, X.; Liang, L.; Ohl, M.; Miller, S. M.; Richter, D.; Gompper, G.; Smith, J. C. Structure and dynamics of a compact state of a multidomain protein, the mercuric ion reductase. Biophys. J. 2014, 107 (2), 393-400.  doi: 10.1016/j.bpj.2014.06.013

    18. [18]

      Hong, L.; Smolin, N.; Lindner, B.; Sokolov, A. P.; Smith, J. C. Three classes of motion in the dynamic neutron-scattering susceptibility of a globular protein. Phys. Rev. Lett. 2011, 107 (14), 148102.  doi: 10.1103/PhysRevLett.107.148102

    19. [19]

      Hong, L.; Smolin, N.; Smith, J. C. de Gennes narrowing describes the relative motion of protein domains. Phys. Rev. Lett. 2014, 112 (15), 158102.  doi: 10.1103/PhysRevLett.112.158102

    20. [20]

      Liu, Z.; Huang, J.; Tyagi, M.; O'Neill, H.; Zhang, Q.; Mamontov, E.; Jain, N.; Wang, Y.; Zhang, J.; Smith, J. C.; Hong, L. Dynamical transition of collective motions in dry proteins. Phys. Rev. Lett. 2017, 119 (4), 048101.  doi: 10.1103/PhysRevLett.119.048101

    21. [21]

      Nickels, J. D.; O'Neill, H.; Hong, L.; Tyagi, M.; Ehlers, G.; Weiss, K. L.; Zhang, Q.; Yi, Z.; Mamontov, E.; Smith, J. C.; Sokolov, A. P. Dynamics of protein and its hydration water: neutron scattering studies on fully deuterated GFP. Biophys. J. 2012, 103 (7), 1566-1575.  doi: 10.1016/j.bpj.2012.08.046

    22. [22]

      Tan, P.; Liang, Y.; Xu, Q.; Mamontov, E.; Li, J.; Xing, X.; Hong, L. Gradual crossover from subdiffusion to normal diffusion: a many-body effect in protein surface water. Phys. Rev. Lett. 2018, 120 (24), 248101.  doi: 10.1103/PhysRevLett.120.248101

    23. [23]

      Hong, L.; Cheng, X.; Glass, D. C.; Smith, J. C. Surface hydration amplifies single-well protein atom diffusion propagating into the macromolecular core. Phys. Rev. Lett. 2012, 108 (23), 238102.  doi: 10.1103/PhysRevLett.108.238102

    24. [24]

      Hong, L.; Glass, D. C.; Nickels, J. D.; Perticaroli, S.; Yi, Z.; Tyagi, M.; O'Neill, H.; Zhang, Q.; Sokolov, A. P.; Smith, J. C. Elastic and conformational softness of a globular protein. Phys. Rev. Lett. 2013, 110 (2), 028104.  doi: 10.1103/PhysRevLett.110.028104

    25. [25]

      Liu, Z.; Yang, C.; Huang, J.; Ciampalini, G.; Li, J.; García Sakai, V.; Tyagi, M.; O’Neill, H.; Zhang, Q.; Capaccioli, S.; Ngai, K. L.; Hong, L. Direct experimental characterization of contributions from self-motion of hydrogen and from interatomic motion of heavy atoms to protein anharmonicity. J. Phys. Chem. B 2018, 122 (43), 9956-9961.  doi: 10.1021/acs.jpcb.8b09355

    26. [26]

      Liu, Z.; Lemmonds, S.; Huang, J.; Tyagi, M.; Hong, L.; Jain, N. Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119. Proc. Natl. Acad. Sci. USA 2018, 115 (43), E10049-E10058.  doi: 10.1073/pnas.1807473115

    27. [27]

      Buchenau, U.; Wischnewski, A.; Richter, D.; Frick, B. Is the fast process at the glass transition mainly due to long wavelength excitations? Phys. Rev. Lett. 1996, 77 (19), 4035-4038.  doi: 10.1103/PhysRevLett.77.4035

    28. [28]

      Nickels, J. D.; Perticaroli, S.; O'Neill, H.; Zhang, Q.; Ehlers, G.; Sokolov, A. P. Coherent neutron scattering and collective dynamics in the protein, GFP. Biophys. J. 2013, 105 (9), 2182-2187.  doi: 10.1016/j.bpj.2013.09.029

    29. [29]

      Carpenter, J. M.; Pelizzari, C. A. Inelastic neutron scattering from amorphous solids. I. Calculation of the scattering law for model structures. Phys. Rev. B 1975, 12, 2391.  doi: 10.1103/PhysRevB.12.2391

    30. [30]

      Suhre, K.; Sanejouand, Y. H. ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res. 2004, 32 (suppl_2, 1), W610-W614.

    31. [31]

      Khodadadi, S.; Pawlus, S.; Sokolov, A. P. Influence of hydration on protein dynamics: Combining dielectric and neutron scattering spectroscopy data. J. Phys. Chem. B 2008, 112 (45), 14273-14280.  doi: 10.1021/jp8059807

    32. [32]

      Modig, K.; Liepinsh, E.; Otting, G.; Halle, B. Dynamics of protein and peptide hydration. J. Am. Chem. Soc. 2004, 126 (1), 102-114.  doi: 10.1021/ja038325d

    33. [33]

      Ebbinghaus, S.; Kim, S. J.; Heyden, M.; Yu, X.; Heugen, U.; Gruebele, M.; Leitner, D. M.; Havenith, M. An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. USA 2007, 104 (52), 20749-20752.  doi: 10.1073/pnas.0709207104

    34. [34]

      King, J. T.; Kubarych, K. J. Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy. J. Am. Chem. Soc. 2012, 134 (45), 18705-18712.  doi: 10.1021/ja307401r

    35. [35]

      Vitkup, D.; Ringe, D.; Petsko, G. A.; Karplus, M. Solvent mobility and the protein 'glass' transition. Nat. Struct. Biol. 2000, 7 (1), 34-38.  doi: 10.1038/71231

    36. [36]

      Roh, J. H.; Curtis, J. E.; Azzam, S.; Novikov, V. N.; Peral, I.; Chowdhuri, Z.; Gregory, R. B.; Sokolov, A. P. Influence of hydration on the dynamics of lysozyme. Biophys. J. 2006, 91 (7), 2573-2588.  doi: 10.1529/biophysj.106.082214

    37. [37]

      Rasmussen, B. F.; Stock, A. M.; Ringe, D.; Petsko, G. A. Crystalline ribonuclease-a Loses function below the dynamic transition at 220 K. Nature 1992, 357 (6377), 423-424.  doi: 10.1038/357423a0

    38. [38]

      He, Y.; Ku, P. I.; Knab, J. R.; Chen, J. Y.; Markelz, A. G. Protein dynamical transition does not require protein structure. Phys. Rev. Lett. 2008, 101 (17), 178103.  doi: 10.1103/PhysRevLett.101.178103

    39. [39]

      Ferrand, M.; Dianoux, A. J.; Petry, W.; Zaccaï, G. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc. Natl. Acad. Sci. USA 1993, 90 (20), 9668-9672.  doi: 10.1073/pnas.90.20.9668

  • 加载中
    1. [1]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    2. [2]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    3. [3]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    4. [4]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    5. [5]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    6. [6]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    7. [7]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    8. [8]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    9. [9]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    10. [10]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    11. [11]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    12. [12]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    13. [13]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    14. [14]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    15. [15]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    16. [16]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    17. [17]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    18. [18]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    19. [19]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    20. [20]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

Metrics
  • PDF Downloads(0)
  • Abstract views(663)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return