Citation: Yue Han, Dong-Hao Tang, Guang-Xing Wang, Ya-Nan Sun, Ying Guo, Heng Zhou, Wen-Feng Qiu, Tong Zhao. Phthalonitrile Resins Derived from Vanillin: Synthesis, Curing Behavior, and Thermal Properties[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 72-83. doi: 10.1007/s10118-019-2311-3 shu

Phthalonitrile Resins Derived from Vanillin: Synthesis, Curing Behavior, and Thermal Properties

  • Vanillin was used as sustainable source for phthalonitrile monomer synthesis, and allyl/propargyl ether moieties were introduced to improve the processability at the minimal cost of thermal properties. The synthesis route was optimized to minimize side-reactions and simplify post-processing, and the monomers were obtained in high purity and good yields. The curing behavior, mechanism, and processability of the monomers were studied, and the thermal properties of cured polymers were evaluated. Of the two monomers, the allyl ether-containing one exhibited a wide processing window of 185 °C, and was mainly cured into phthalocyanine and linear aliphatic structures through self-catalytic curing process. Also, the glass transition temperature was higher than 500 °C. In contrast, the propargyl ether-containing monomer could only be partially cured, and heat resistance was found to be compromised. Compared with traditional petroleum-based phthalonitrile resins, the bio-based monomers could be cured without the addition of catalysts, and improvement in processability was achieved at no cost of thermal performances.
  • 加载中
    1. [1]

      Augustine, D.; Mathew, D.; Reghunadhan, N. C. P. Mechanistic and kinetic aspects of the curing of phthalonitrile monomers in the presence of propargyl groups. Polymer 2015, 60, 308−317.  doi: 10.1016/j.polymer.2015.01.055

    2. [2]

      Wang, M.; Ning, Y. Oligosilylarylnitrile: the thermoresistant thermosetting resin with high comprehensive properties. ACS Appl. Mater. Interfaces 2018, 10, 11933−11940.  doi: 10.1021/acsami.8b00238

    3. [3]

      Phua, E. J. R.; Liu, M.; Cho, B.; Liu, Q.; Amini, S.; Hu, X.; Gan, C. L. Novel high temperature polymeric encapsulation material for extreme environment electronics packaging. Mater. Design 2018, 141, 202−209.  doi: 10.1016/j.matdes.2017.12.029

    4. [4]

      Bulgakov, B. A.; Sulimov, A. V.; Babkin, A. V.; Timoshkin, I. A.; Solopchenko, A. V.; Kepman, A. V.; Avdeev, V. V. Phthalonitrile-carbon fiber composites produced by vacuum infusion process. J. Compos. Mater. 2017, 51, 4157−4164.  doi: 10.1177/0021998317699452

    5. [5]

      Zong, L.; Liu, C.; Zhang, S.; Wang, J.; Jian, X. Enhanced thermal properties of phthalonitrile networks by cooperating phenyl-s-triazine moieties in backbones. Polymer 2015, 77, 177−188.  doi: 10.1016/j.polymer.2015.09.035

    6. [6]

      Han, Y.; Wang, G.; Qiu, W.; Guo, Y.; Sun, Y.; Zhang, Y.; Zhou, H.; Zhao, T. Activated-carbon-supported calcium oxide: a selective and efficient catalyst for nitrile-containing diaryl ether synthesis. Asian J. Org. Chem. 2018, 7, 2511−2517.  doi: 10.1002/ajoc.v7.12

    7. [7]

      Xu, Y. L.; Dayo, A. Q.; Derradji, M.; Wang, J.; Liu, W. B.; Song, S.; Tang, T. Copolymerization of bisphthalonitrile/benzoxazine blends: curing behavior, thermomechanical and thermal properties. React. Funct. Polym. 2018, 123, 97−105.  doi: 10.1016/j.reactfunctpolym.2017.12.013

    8. [8]

      Sastri, S. B.; Armistead, J. P.; Keller, T. M. Phthalonitrile-carbon fiber composites. Polym. Compos. 1996, 17, 816−823.  doi: 10.1002/(ISSN)1548-0569

    9. [9]

      Song, Y.; Zong, L.; Bao, F.; Li, G.; Wu, Z.; Li, N.; Wang, J.; Jian, X. Reduced curing kinetic energy and enhanced thermal resistance of phthalonitrile resins modified with inorganic particles. Polym. Adv. Technol. 2018, 29, 1922−1929.  doi: 10.1002/pat.v29.7

    10. [10]

      Keller, T. M.; Dominguez, D. D. High temperature resorcinol-based phthalonitrile polymer. Polymer 2005, 46, 4614−4618.  doi: 10.1016/j.polymer.2005.03.068

    11. [11]

      Mohanty, A. K.; Vivekanandhan, S.; Pin, J. M.; Misra, M. Composites from renewable and sustainable resources: challenges and innovations. Science 2018, 362, 536−542.  doi: 10.1126/science.aat9072

    12. [12]

      Upton, B. M.; Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 2016, 116, 2275−2306.  doi: 10.1021/acs.chemrev.5b00345

    13. [13]

      Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P. Biobased thermosetting epoxy: present and future. Chem. Rev. 2014, 114, 1082−1115.  doi: 10.1021/cr3001274

    14. [14]

      Qi, Y.; Weng, Z.; Wang, J.; Zhang, S.; Zong, L.; Liu, C.; Jian, X. A novel bio-based phthalonitrile resin derived from catechin: synthesis and comparison of curing behavior with petroleum-based counterpart. Polym. Int. 2018, 67, 322−329.

    15. [15]

      Laskoski, M.; Clarke, J. S.; Neal, A.; Harvey, B. G.; Ricks-Laskoski, H. L.; Hervey, W. J.; Daftary, M. N.; Shepherd, A. R.; Keller, T. M. Sustainable high-temperature phthalonitrile resins derived from resveratrol and dihydroresveratrol. ChemistrySelect 2016, 1, 3423−3427.  doi: 10.1002/slct.201600304

    16. [16]

      Laskoski, M.; Shepherd, A. R.; Mahzabeen, W.; Clarke, J. S.; Keller, T. M.; Sorathia, U. Sustainable, fire-resistant phthalonitrile-based glass fiber composites. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1128−1132.  doi: 10.1002/pola.v56.11

    17. [17]

      Fache, M.; Boutevin, B.; Caillol, S. Vanillin, a key-intermediate of biobased polymers. Eur. Polym. J. 2015, 68, 488−502.  doi: 10.1016/j.eurpolymj.2015.03.050

    18. [18]

      Savonnet, E.; Grau, E.; Grelier, S.; Defoort, B.; Cramail, H. Divanillin-based epoxy precursors as DGEBA substitutes for biobased epoxy thermosets. ACS Sustain. Chem. Eng. 2018, 6, 11008−11017.  doi: 10.1021/acssuschemeng.8b02419

    19. [19]

      Wang, S.; Ma, S.; Xu, C.; Liu, Y.; Dai, J.; Wang, Z.; Liu, X.; Chen, J.; Shen, X.; Wei, J.; Zhu, J. Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules 2017, 50, 1892−1901.  doi: 10.1021/acs.macromol.7b00097

    20. [20]

      Harvey, B. G.; Guenthner, A. J.; Meylemans, H. A.; Haines, S. R. L.; Lamison, K. R.; Groshens, T. J.; Cambrea, L. R.; Davis, M. C.; Lai, W. W. Renewable thermosetting resins and thermoplastics from vanillin. Green Chem. 2015, 17, 1249−1258.  doi: 10.1039/C4GC01825G

    21. [21]

      Xu, S.; Han, Y.; Guo, Y.; Luo, Z.; Ye, L.; Li, Z.; Zhou, H.; Zhao, Y.; Zhao, T. Allyl phenolic-phthalonitrile resins with tunable properties: curing, processability and thermal stability. Eur. Polym. J. 2017, 95, 394−405.  doi: 10.1016/j.eurpolymj.2017.08.010

    22. [22]

      Sheng, H.; Peng, X.; Guo, H.; Yu, X.; Naito, K.; Qu, X.; Zhang, Q. Synthesis of high performance bisphthalonitrile resins cured with self-catalyzed 4-aminophenoxy phthalonitrile. Thermochim. Acta 2014, 577, 17−24.  doi: 10.1016/j.tca.2013.12.010

    23. [23]

      Smith, M. B.; March, J. March's advanced organic chemistry: reactions, mechanisms, and structure. John Wiley & Sons, 2007.

    24. [24]

      Ichikawa, H.; Maruoka, K. The Claisen rearrangement: methods and applications. Wiley-VCH Verlag GmbH & Co, 2007.

    25. [25]

      Reghunadhan, N. C. P.; Krishnan, K.; Ninan, K. N. Differential scanning calorimetric study on the Claisen rearrangement and thermal polymerisation of diallyl ether of bisphenols. Thermochim. Acta 2000, 359, 61−67.  doi: 10.1016/S0040-6031(00)00504-9

    26. [26]

      Sumner, M. J.; Sankarapandian, M.; McGrath, J. E.; Riffle, J. S.; Sorathia, U. Flame retardant novolac-bisphthalonitrile structural thermosets. Polymer 2002, 43, 5069−5076.  doi: 10.1016/S0032-3861(02)00354-3

    27. [27]

      Zeng, K.; Zhou, K.; Zhou, S.; Hong, H.; Zhou, H.; Wang, Y.; Miao, P.; Yang, G. Studies on self-promoted cure behaviors of hydroxy-containing phthalonitrile model compounds. Eur. Polym. J. 2009, 45, 1328−1335.  doi: 10.1016/j.eurpolymj.2008.12.036

    28. [28]

      Ma, J. Z.; Cheng, K.; Lv, J. B.; Chen, C.; Hu, J. H.; Zeng, K.; Yang, G. Phthalonitrile-PPO blends: cure behavior and properties. Chinese J. Polym. Sci. 2018, 36, 497−504.

    29. [29]

      Hu, J.; Liu, Y.; Jiao, Y.; Ji, S.; Sun, R.; Yuan, P.; Zeng, K.; Pu, X.; Yang, G. Self-promoted phthalimide-containing phthalonitrile resins with sluggish curing process and excellent thermal stability. RSC Adv. 2015, 5, 16199−16206.  doi: 10.1039/C4RA17306F

    30. [30]

      Guo, H.; Chen, Z.; Liu, X. Effect of processing conditions on physical properties of 3-aminophenoxyphthalonitrile/epoxy laminates. J. Appl. Polym. Sci. 2014, 131, 39746.

    31. [31]

      Zhao, X.; Guo, H.; Lei, Y.; Zhao, R.; Zhong, J.; Liu, X. Effect of polyarylene ether nitriles on processing and mechanical behaviors of phthalonitrile-epoxy copolymers and glass fiber laminated composites. J. Appl. Polym. Sci. 2013, 127, 4873−4878.  doi: 10.1002/app.38089

    32. [32]

      Jiang, M.; Xu, M.; Jia, K.; Liu, X. Copolymerization of self-catalyzed phthalonitrile with bismaleimide toward high-temperature-resistant polymers with improved processability. High Perform. Polym. 2016, 28, 895−907.  doi: 10.1177/0954008315606955

  • 加载中
    1. [1]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    2. [2]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    3. [3]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    4. [4]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    5. [5]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    6. [6]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    7. [7]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    8. [8]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    9. [9]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    10. [10]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    11. [11]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    12. [12]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    13. [13]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    14. [14]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    15. [15]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    16. [16]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    17. [17]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    18. [18]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    19. [19]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    20. [20]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

Metrics
  • PDF Downloads(0)
  • Abstract views(750)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return