Phthalonitrile Resins Derived from Vanillin: Synthesis, Curing Behavior, and Thermal Properties
- Corresponding author: Heng Zhou, zhouheng@iccas.ac.cn Wen-Feng Qiu, wfqiu@scut.edu.cn
Citation:
Yue Han, Dong-Hao Tang, Guang-Xing Wang, Ya-Nan Sun, Ying Guo, Heng Zhou, Wen-Feng Qiu, Tong Zhao. Phthalonitrile Resins Derived from Vanillin: Synthesis, Curing Behavior, and Thermal Properties[J]. Chinese Journal of Polymer Science,
;2020, 38(1): 72-83.
doi:
10.1007/s10118-019-2311-3
Augustine, D.; Mathew, D.; Reghunadhan, N. C. P. Mechanistic and kinetic aspects of the curing of phthalonitrile monomers in the presence of propargyl groups. Polymer 2015, 60, 308−317.
doi: 10.1016/j.polymer.2015.01.055
Wang, M.; Ning, Y. Oligosilylarylnitrile: the thermoresistant thermosetting resin with high comprehensive properties. ACS Appl. Mater. Interfaces 2018, 10, 11933−11940.
doi: 10.1021/acsami.8b00238
Phua, E. J. R.; Liu, M.; Cho, B.; Liu, Q.; Amini, S.; Hu, X.; Gan, C. L. Novel high temperature polymeric encapsulation material for extreme environment electronics packaging. Mater. Design 2018, 141, 202−209.
doi: 10.1016/j.matdes.2017.12.029
Bulgakov, B. A.; Sulimov, A. V.; Babkin, A. V.; Timoshkin, I. A.; Solopchenko, A. V.; Kepman, A. V.; Avdeev, V. V. Phthalonitrile-carbon fiber composites produced by vacuum infusion process. J. Compos. Mater. 2017, 51, 4157−4164.
doi: 10.1177/0021998317699452
Zong, L.; Liu, C.; Zhang, S.; Wang, J.; Jian, X. Enhanced thermal properties of phthalonitrile networks by cooperating phenyl-s-triazine moieties in backbones. Polymer 2015, 77, 177−188.
doi: 10.1016/j.polymer.2015.09.035
Han, Y.; Wang, G.; Qiu, W.; Guo, Y.; Sun, Y.; Zhang, Y.; Zhou, H.; Zhao, T. Activated-carbon-supported calcium oxide: a selective and efficient catalyst for nitrile-containing diaryl ether synthesis. Asian J. Org. Chem. 2018, 7, 2511−2517.
doi: 10.1002/ajoc.v7.12
Xu, Y. L.; Dayo, A. Q.; Derradji, M.; Wang, J.; Liu, W. B.; Song, S.; Tang, T. Copolymerization of bisphthalonitrile/benzoxazine blends: curing behavior, thermomechanical and thermal properties. React. Funct. Polym. 2018, 123, 97−105.
doi: 10.1016/j.reactfunctpolym.2017.12.013
Sastri, S. B.; Armistead, J. P.; Keller, T. M. Phthalonitrile-carbon fiber composites. Polym. Compos. 1996, 17, 816−823.
doi: 10.1002/(ISSN)1548-0569
Song, Y.; Zong, L.; Bao, F.; Li, G.; Wu, Z.; Li, N.; Wang, J.; Jian, X. Reduced curing kinetic energy and enhanced thermal resistance of phthalonitrile resins modified with inorganic particles. Polym. Adv. Technol. 2018, 29, 1922−1929.
doi: 10.1002/pat.v29.7
Keller, T. M.; Dominguez, D. D. High temperature resorcinol-based phthalonitrile polymer. Polymer 2005, 46, 4614−4618.
doi: 10.1016/j.polymer.2005.03.068
Mohanty, A. K.; Vivekanandhan, S.; Pin, J. M.; Misra, M. Composites from renewable and sustainable resources: challenges and innovations. Science 2018, 362, 536−542.
doi: 10.1126/science.aat9072
Upton, B. M.; Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 2016, 116, 2275−2306.
doi: 10.1021/acs.chemrev.5b00345
Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P. Biobased thermosetting epoxy: present and future. Chem. Rev. 2014, 114, 1082−1115.
doi: 10.1021/cr3001274
Qi, Y.; Weng, Z.; Wang, J.; Zhang, S.; Zong, L.; Liu, C.; Jian, X. A novel bio-based phthalonitrile resin derived from catechin: synthesis and comparison of curing behavior with petroleum-based counterpart. Polym. Int. 2018, 67, 322−329.
Laskoski, M.; Clarke, J. S.; Neal, A.; Harvey, B. G.; Ricks-Laskoski, H. L.; Hervey, W. J.; Daftary, M. N.; Shepherd, A. R.; Keller, T. M. Sustainable high-temperature phthalonitrile resins derived from resveratrol and dihydroresveratrol. ChemistrySelect 2016, 1, 3423−3427.
doi: 10.1002/slct.201600304
Laskoski, M.; Shepherd, A. R.; Mahzabeen, W.; Clarke, J. S.; Keller, T. M.; Sorathia, U. Sustainable, fire-resistant phthalonitrile-based glass fiber composites. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1128−1132.
doi: 10.1002/pola.v56.11
Fache, M.; Boutevin, B.; Caillol, S. Vanillin, a key-intermediate of biobased polymers. Eur. Polym. J. 2015, 68, 488−502.
doi: 10.1016/j.eurpolymj.2015.03.050
Savonnet, E.; Grau, E.; Grelier, S.; Defoort, B.; Cramail, H. Divanillin-based epoxy precursors as DGEBA substitutes for biobased epoxy thermosets. ACS Sustain. Chem. Eng. 2018, 6, 11008−11017.
doi: 10.1021/acssuschemeng.8b02419
Wang, S.; Ma, S.; Xu, C.; Liu, Y.; Dai, J.; Wang, Z.; Liu, X.; Chen, J.; Shen, X.; Wei, J.; Zhu, J. Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules 2017, 50, 1892−1901.
doi: 10.1021/acs.macromol.7b00097
Harvey, B. G.; Guenthner, A. J.; Meylemans, H. A.; Haines, S. R. L.; Lamison, K. R.; Groshens, T. J.; Cambrea, L. R.; Davis, M. C.; Lai, W. W. Renewable thermosetting resins and thermoplastics from vanillin. Green Chem. 2015, 17, 1249−1258.
doi: 10.1039/C4GC01825G
Xu, S.; Han, Y.; Guo, Y.; Luo, Z.; Ye, L.; Li, Z.; Zhou, H.; Zhao, Y.; Zhao, T. Allyl phenolic-phthalonitrile resins with tunable properties: curing, processability and thermal stability. Eur. Polym. J. 2017, 95, 394−405.
doi: 10.1016/j.eurpolymj.2017.08.010
Sheng, H.; Peng, X.; Guo, H.; Yu, X.; Naito, K.; Qu, X.; Zhang, Q. Synthesis of high performance bisphthalonitrile resins cured with self-catalyzed 4-aminophenoxy phthalonitrile. Thermochim. Acta 2014, 577, 17−24.
doi: 10.1016/j.tca.2013.12.010
Smith, M. B.; March, J. March's advanced organic chemistry: reactions, mechanisms, and structure. John Wiley & Sons, 2007.
Ichikawa, H.; Maruoka, K. The Claisen rearrangement: methods and applications. Wiley-VCH Verlag GmbH & Co, 2007.
Reghunadhan, N. C. P.; Krishnan, K.; Ninan, K. N. Differential scanning calorimetric study on the Claisen rearrangement and thermal polymerisation of diallyl ether of bisphenols. Thermochim. Acta 2000, 359, 61−67.
doi: 10.1016/S0040-6031(00)00504-9
Sumner, M. J.; Sankarapandian, M.; McGrath, J. E.; Riffle, J. S.; Sorathia, U. Flame retardant novolac-bisphthalonitrile structural thermosets. Polymer 2002, 43, 5069−5076.
doi: 10.1016/S0032-3861(02)00354-3
Zeng, K.; Zhou, K.; Zhou, S.; Hong, H.; Zhou, H.; Wang, Y.; Miao, P.; Yang, G. Studies on self-promoted cure behaviors of hydroxy-containing phthalonitrile model compounds. Eur. Polym. J. 2009, 45, 1328−1335.
doi: 10.1016/j.eurpolymj.2008.12.036
Ma, J. Z.; Cheng, K.; Lv, J. B.; Chen, C.; Hu, J. H.; Zeng, K.; Yang, G. Phthalonitrile-PPO blends: cure behavior and properties. Chinese J. Polym. Sci. 2018, 36, 497−504.
Hu, J.; Liu, Y.; Jiao, Y.; Ji, S.; Sun, R.; Yuan, P.; Zeng, K.; Pu, X.; Yang, G. Self-promoted phthalimide-containing phthalonitrile resins with sluggish curing process and excellent thermal stability. RSC Adv. 2015, 5, 16199−16206.
doi: 10.1039/C4RA17306F
Guo, H.; Chen, Z.; Liu, X. Effect of processing conditions on physical properties of 3-aminophenoxyphthalonitrile/epoxy laminates. J. Appl. Polym. Sci. 2014, 131, 39746.
Zhao, X.; Guo, H.; Lei, Y.; Zhao, R.; Zhong, J.; Liu, X. Effect of polyarylene ether nitriles on processing and mechanical behaviors of phthalonitrile-epoxy copolymers and glass fiber laminated composites. J. Appl. Polym. Sci. 2013, 127, 4873−4878.
doi: 10.1002/app.38089
Jiang, M.; Xu, M.; Jia, K.; Liu, X. Copolymerization of self-catalyzed phthalonitrile with bismaleimide toward high-temperature-resistant polymers with improved processability. High Perform. Polym. 2016, 28, 895−907.
doi: 10.1177/0954008315606955
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
Xiao Zhu , Yanbing Mo , Jiawei Chen , Gaopan Liu , Yonggang Wang , Xiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Yaping Zhang , Wei Zhou , Mingchun Gao , Tianqi Liu , Bingxin Liu , Chang-Hua Ding , Bin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836
Chong-Yang Shi , Jian-Xing Gong , Zhen Li , Chao Shu , Long-Wu Ye , Qing Sun , Bo Zhou , Xin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
Guizhi Zhu , Junrui Tan , Longfei Tan , Qiong Wu , Xiangling Ren , Changhui Fu , Zhihui Chen , Xianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669
Shuai Liang , Wen-Jing Jiang , Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381