Citation: Meng Jin, Zhao-Chen Zhu, Qiu-Yan Liao, Qian-Qian Li, Zhen Li. Dendronized Polymers with High FTC-chromophore Loading Density: Large Second-order Nonlinear Optical Effects, Good Temporal and Thermal Stability[J]. Chinese Journal of Polymer Science, ;2020, 38(2): 118-125. doi: 10.1007/s10118-019-2307-z shu

Dendronized Polymers with High FTC-chromophore Loading Density: Large Second-order Nonlinear Optical Effects, Good Temporal and Thermal Stability

  • In this study, two new dendronized nonlinear optical (NLO) polymers were synthesized with high FTC chromophore loading density by introduction of high generation chromophore dendrons on the side chains. Due to their suitable molecular weights, both of them possessed good solubility in common solvents. They also inherited the advantages of dendrimers (large NLO coefficient), especially for PG2 whose NLO coefficient d33 value was as high as 282 pm·V–1. Also, PG2 had a good temporal stability with 80% of its maximum value being retained at the temperature as high as 129 °C.
  • 加载中
    1. [1]

      Dalton, L. R.; Sullivan, P. A.; Bale, D. H. Electric field poled organic electro-optic materials: state of the art and future prospects. Chem. Rev. 2010, 110, 25−55.  doi: 10.1021/cr9000429

    2. [2]

      Bai, Y.; Song, N. H.; Gao, J. P.; Sun, X.; Wang, X. M.; Yu, G. M.; Wang, Z. Y. A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant. J. Am. Chem. Soc. 2005, 127, 2060−2061.  doi: 10.1021/ja042854f

    3. [3]

      Luo, J. D.; Huang, S.; Shi, Z. W.; Polishak, B. M.; Zhou, X. H.; Jen, A. K. Y. Tailored organic electro-optic materials and their hybrid systems for device applications. Chem. Mater. 2011, 23, 544−553.  doi: 10.1021/cm1022344

    4. [4]

      Yu, D.; Gharavi, A.; Yu, L. P. Novel aromatic polyimides for nonlinear optics. J. Am. Chem. Soc. 1995, 117, 11680−11686.  doi: 10.1021/ja00152a008

    5. [5]

      Wu, W. B.; Tang, R.; Li, Q. Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997−4022.  doi: 10.1039/C4CS00224E

    6. [6]

      Bhattacharjee, Y. L, S.; Dalton, L. R. Antiparallel-aligned neutral ground state and zwitterionic chromophores as a nonlinear optical material. J. Am. Chem. Soc. 2006, 128, 6847−6853.  doi: 10.1021/ja057903i

    7. [7]

      Huang, W.; Jin, Z. A.; Shi, Z. W.; Intemann, J. J.; Li, M.; Luo, J. D.; Jen, A. K. Y. Spontaneous thermal crosslinking of a sydnone containing side-chain polymer with maleimides through a convergent [3 + 2] dual cycloaddition cycloreversion process for electro-optics. Polym. Chem. 2013, 4, 5760−5767.  doi: 10.1039/c3py00694h

    8. [8]

      Dini, D.; Calvete, M. J. F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 2103−2140.  doi: 10.1021/acs.chemrev.5b00515

    9. [9]

      Benabid, F.; Knight, J. C.; Antonopoulos, G.; Russell, P. S. J. Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 2002, 298, 399−402.  doi: 10.1126/science.1076408

    10. [10]

      Marks, T. J.; Ratner, M. A. Design, synthesis, and properties of molecule-based assemblies with large second-order optical nonlinearities. Angew. Chem. Int. Ed. 1995, 34, 155−173.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Luo, J. D.; Zhou, X. H.; Jen, A. K. Y. Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials. J. Mater. Chem. 2009, 19, 7410−7424.  doi: 10.1039/b907173c

    12. [12]

      Li, Z. A.; Wu, W. B.; Ye, C.; Qin, J. G.; Li, Z. New main-chain hyperbranched polymers: facile synthesis, structural control, and second-order nonlinear optical properties. Polymer 2012, 53, 153−160.  doi: 10.1016/j.polymer.2011.11.015

    13. [13]

      Li, Z. A.; Wu, W. B.; Ye, C.; Qin, J. G.; Li, Z. New second-order nonlinear optical polymers derived from AB2 and AB monomers via Sonogashira coupling reaction. Macromol. Chem. Phys. 2010, 211, 916−923.  doi: 10.1002/macp.200900605

    14. [14]

      Wu, W. B.; Fu, Y. J.; Wang, C.; Ye, C.; Qin, J. G.; Li, Z. A series of hyperbranched polytriazoles containing perfluoroaromatic rings from AB2-type monomers: Convenient syntheses by click chemistry under copper(I) catalysis and enhanced optical nonlinearity. Chem. Asian J. 2011, 6, 2787−2795.  doi: 10.1002/asia.v6.10

    15. [15]

      Wu, W. B.; Ye, C.; Yu, G.; Liu, Y. Q.; Qin, J. G.; Li, Z. New hyperbranched polytriazoles containing isolation chromophore moieties derived from AB4 monomers through click chemistry under copper(I) catalysis: Improved optical transparency and enhanced NLO effects. Chem. Eur. J. 2012, 18, 4426−4434.  doi: 10.1002/chem.v18.14

    16. [16]

      Li, Z. A.; Wu, W. B.; Ye, C.; Qin, J. G; Li, Z. New hyperbranched polyaryleneethynylene containing azobenzene chromophore moieties in the main chain: facile synthesis, large optical nonlinearity and high thermal stability. Polym. Chem. 2010, 1, 78−81.

    17. [17]

      Li, Z. A; Yu, G.; Liu, Y. Q.; Ye, C.; Qin, J. G.; Li, Z. Dendronized polyfluorenes with high azo-chromophore loading density: convenient synthesis and enhanced second-order nonlinear optical effects. Macromolecules 2009, 42, 6463−6472.  doi: 10.1021/ma901108r

    18. [18]

      Chen, P. Y.; Yin, X. Y.; Xie, Y. J.; Li, S. F.; Luo, S. Y.; Zeng, H. Y.; Guo, G. C.; Li, Q. Q.; Li, Z. FTC-containing molecules: large second-order nonlinear optical performance and excellent thermal stability, and the key development of the ‘‘Isolation Chromophore’’ concept. J. Mater. Chem. C 2016, 4, 11474−11481.  doi: 10.1039/C6TC04282A

    19. [19]

      Holman, J.; Ye, S.; Neivandt, D. J.; Davies, P. B. Studying nanoparticle-induced structural changes within fatty acid multilayer films using sum frequency generation vibrational spectroscopy. J. Am. Chem. Soc. 2004, 126, 14322−14323.  doi: 10.1021/ja046954x

    20. [20]

      Shi, Z. W.; Luo, J. D.; Jen, A. K. Y. Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process. J. Mater. Chem. 2012, 22, 951−959.  doi: 10.1039/C1JM14254B

    21. [21]

      Tang, R. L.; Chen, H.; Zhou, S. M.; Xiang, W.; Tang, X.; Liu, B.; Dong, Y.; Zeng, H.; Li, Z. New ‘‘X-type’’ second-order nonlinear optical (NLO) dendrimers: fewer chromophore moieties and high NLO effects. Polym. Chem. 2015, 6, 5580−5589.  doi: 10.1039/C5PY00155B

    22. [22]

      Kolli, B.; Pandey, S.; Mishra, S. P.; Kanai, T.; Joshi, M. P.; Mohan, R. S.; Samu, A. B. Synthesis and characterization of azo-bisbenzylidene-based polymers for second order nonlinear optics. Polym. Chem. 2013, 51, 4317−4324.  doi: 10.1002/pola.26842

    23. [23]

      Wu, W. B.; Fu, Y. J.; Wang, C.; Xu, Z.; Ye, C.; Qin, J. G.; Li, Z. Second-order nonlinear optical hyperbranched polymer containing isolation chromophore moieties derived from both “H”-type and star-type chromophores. Chinese J. Polym. Sci. 2013, 31, 1415−1423.  doi: 10.1007/s10118-013-1343-3

    24. [24]

      Li, Z. A.; Li, Z.; Di, C. A.; Zhu, Z. C.; Li, Q. Q.; Zeng, Q.; Zhang, K.; Liu, Y. Q.; Ye, C.; Qin, J. G. Structural control of the side-chain chromophores to achieve highly efficient nonlinear optical polyurethanes. Macromolecules 2006, 39, 6951−6961.  doi: 10.1021/ma0608875

    25. [25]

      Li, Z. A.; Li, P. C.; Dong, S. C.; Zhu, Z. C.; Li, Q. Q.; Zeng, Q.; Li, Z.; Ye, C.; Qin, J. G. Controlling nonlinear optical effects of polyurethanes by adjusting isolation spacers through facile postfunctional polymer reactions. Polymer 2007, 48, 3650−3657.  doi: 10.1016/j.polymer.2007.04.062

    26. [26]

      Zeng, Q.; Li, Z. A.; Li, Z.; Ye, C.; Qin, J. G.; Tang, B. Z. Convenient attachment of highly polar azo chromophore moieties to disubstituted polyacetylene through polymer reactions by using “click” chemistry. Macromolecules 2007, 40, 5634−5637.  doi: 10.1021/ma070846o

    27. [27]

      Chen, P. Y.; Liu, G. C.; Zhang, H. Y.; Jin, M.; Han, M. M.; Cheng, Z. Y.; Peng, Q.; Li, Q. Q.; Li, Z. A rigid ringlike molecule: large second-order nonlinear optical performance, good temporal and thermal stability, and ideal spherical structure conforming to the ‘‘site isolation’’ principle. J. Mater. Chem. C 2018, 6, 6784−6791.  doi: 10.1039/C8TC01598H

    28. [28]

      Chen, P. Y.; Li, Z. The design of second-order nonlinear optical dendrimers: from “branch only” to “root containing”. Chinese J. Polym. Sci. 2017, 7, 793−798.

    29. [29]

      Chen, P. Y.; Zhang, H. Y.; Han, M. M.; Cheng, Z. Y.; Peng, Q.; Li, Q. Q.; Li, Z. Janus molecules: large second-order nonlinear optical performance, good temporal stability, excellent thermal stability and spherical structure with optimized dendrimer structure. Mater. Chem. Front. 2018, 2, 1374−1382.  doi: 10.1039/C8QM00128F

    30. [30]

      Wu, W. B.; Huang, Q.; Qiu, G. F.; Ye, C.; Qin, J. G.; Li, Z. Aromatic/perfluoroaromatic self-assembly effect: an effective strategy to improve the NLO effect. J. Mater. Chem. 2012, 22, 18486−18495.  doi: 10.1039/c2jm33129b

    31. [31]

      Ma, H.; Liu, S.; Luo, J.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y. Highly efficient and thermally stable electro-optical dendrimers for photonics. Adv. Funct. Mater. 2002, 12, 565−574.  doi: 10.1002/1616-3028(20020916)12:9<565::AID-ADFM565>3.0.CO;2-8

    32. [32]

      Wu, W. B.; Huang, L. J.; Song, C. F.; Yu, G.; Ye, C.; Liu, Y. Q.; Qin, J. G.; Li, Q. Q.; Li, Z. Novel global-like second-order nonlinear optical dendrimers: convenient synthesis through powerful click chemistry and large NLO effects achieved by using simple azo chromophore. Chem. Sci. 2012, 3, 1256−1261.  doi: 10.1039/c2sc00834c

    33. [33]

      Zhu, Z. C.; Li, Z. A.; Tan, Y.; Li, Z.; Li, Q. Q.; Zeng, Q.; Ye, C.; Qin, J. G. New hyperbranched polymers containing second-order nonlinear optical chromophores: synthesis and nonlinear optical characterization. Polymer 2006, 47, 7881−7888.  doi: 10.1016/j.polymer.2006.09.047

    34. [34]

      Li, Z. A.; Yu, G.; Hu, P.; Ye, C.; Liu, Y. Q.; Qin, J. G.; Li, Z. New azo chromophore containing hyperbranched polytriazoles derived from AB2 monomers via click chemistry under copper(I) catalysis. Macromolecules 2009, 42, 1589−1596.  doi: 10.1021/ma8025223

    35. [35]

      Ronchi, M.; Pizzotti, M.; Biroli, A. O.; Righetto, S.; Ugo, R. Second-order nonlinear optical (NLO) properties of a multichromophoric system based on an ensemble of four organic NLO chromophores nanoorganized on a cyclotetrasiloxane architecture. J. Phys. Chem. C 2009, 113, 2745−2760.

    36. [36]

      Yang, H. T.; Tang, R. L.; Wu, W. B.; Liu, W.; Guo, Q.; Liu, Y. L.; Xu, S. G.; Cao, S. K.; Li, Z. A series of dendronized hyperbranched polymers with dendritic chromophore moieties in the periphery: convenient synthesis and large nonlinear optical effects. Polym. Chem. 2016, 7, 4016−4024.  doi: 10.1039/C6PY00546B

    37. [37]

      Li, Z. A.; Wu, W. B.; Li, Q. Q.; Yu, G.; Xiao, L.; Liu, Y. Q.; Ye, C.; Qin, J. G.; Li, Z. High-generation second-order nonlinear optical (NLO) dendrimers: convenient synthesis by click chemistry and the increasing trend of NLO effects. Angew. Chem. Int. Ed. 2010, 49, 2763−2767.  doi: 10.1002/anie.200906946

    38. [38]

      Liu, J. L.; Wang, L.; Zhen, Z.; Liu, X. H. Synthesis of novel polyarylate with elecrooptical chromophores as side chain as electro-optic host polymer. Colloid Polym. Sci. 2012, 290, 1215−1220.  doi: 10.1007/s00396-012-2695-x

    39. [39]

      Liu, W.; Yang, H. T.; Wu, W. B.; Gao, H. Y.; Xu. S. D.; Guo, Q.; Liu, Y. L.; Xu, S. G. Calix [4] resorcinarene-based branched macromolecules for all-optical photorefractive applications. J. Mater. Chem. C 2016, 4, 10684−10690.  doi: 10.1039/C6TC04062D

    40. [40]

      Hu, C. L.; Chen, Z.; Xiao, H. Y.; Zhen, Z.; Liu, X. H.; Bo, S. H. Synthesis and characterization of a novel indoline based nonlinear optical chromophore with excellent electro-optic activity and high thermal stability by modifying the π-conjugated bridges. J. Mater. Chem. C 2017, 5, 5111−5118.  doi: 10.1039/C7TC00735C

    41. [41]

      Li, Z.; Qin, J. G.; Li, S. J.; Ye, C.; Luo, J.; Cao, Y. Polyphophazene containing indole-based dual chromophores: synthesis and nonlinear optical characterization. Macromolecules 2002, 35, 9232−9235.  doi: 10.1021/ma020769r

    42. [42]

      Li, Z.; Huang, C.; Hua, J. L.; Qin, J. G.; Yang, Z.; Ye, C. A new post-functional approach to prepare second-order nonlinear optical polyphophazenes containing sulfonyl-based chromophore. Macromolecules 2004, 37, 371−376.  doi: 10.1021/ma035044h

    43. [43]

      Wu, W. B.; Li, Z. Further improvement of the macroscopic NLO coefficient and optical transparency of hyperbranched polymers by enhancing the degree of branching. Polym. Chem. 2014, 5, 5100−5108.  doi: 10.1039/C4PY00419A

    44. [44]

      Wu, W. B.; Ye, S. H.; Huang, L. J.; Yu, G.; Liu, Y. Q.; Qin, J. G.; Li, Z. A functional conjugated hyperbranched polymer derived from tetraphenylethene and oxadiazole moieties: synthesis by one-pot “a4 + b2 + c2” polymerization and applicaion as explosive chemosensor and PLED. Chinese J. Polym. Sci. 2013, 31, 1432−1442.  doi: 10.1007/s10118-013-1328-2

  • 加载中
    1. [1]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    2. [2]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    3. [3]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    4. [4]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    5. [5]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    6. [6]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    7. [7]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    11. [11]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    12. [12]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    13. [13]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    14. [14]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    15. [15]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    18. [18]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    19. [19]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    20. [20]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

Metrics
  • PDF Downloads(0)
  • Abstract views(1798)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return