-
[1]
Yang, Z.; He, Y.; Lee, J. H.; Park, N.; Suh, M.; Chae, W. S.; Cao, J.; Peng, X.; Jung, H.; Kang, C.; Kim, J. S. A self-calibrating bipartite viscosity sensor for mitochondria. J. Am. Chem. Soc. 2013, 135, 9181−9185.
doi: 10.1021/ja403851p
-
[2]
Yu, G.; Zhang, M.; Saha, M. L.; Mao, Z.; Chen, J.; Yao, Y.; Zhou, Z.; Liu, Y.; Gao, C.; Huang, F.; Chen, X.; Stang, P. J. Antitumor activity of a unique polymer that incorporates a fluorescent self-assembled metallacycle. J. Am. Chem. Soc. 2017, 139, 15940−15949.
doi: 10.1021/jacs.7b09224
-
[3]
Peng, H. Q.; Sun, C. L.; Niu, L. Y.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Supramolecular polymeric fluorescent nanoparticles based on quadruple hydrogen bonds. Adv. Funct. Mater. 2016, 26, 5483−5489.
doi: 10.1002/adfm.201600593
-
[4]
Sun, C. L.; Xu, J. F.; Chen, Y. Z.; Niu, L. Y.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Synthesis of a disulfide-bridged bispillar[5]arene and its application in supramolecular polymers. Polym. Chem. 2016, 7, 2057−2061.
doi: 10.1039/C6PY00148C
-
[5]
Yang, C.; Wang, X.; Huang, S.; Wang, M. Tunable Forster resonance energy transfer in colloidal nanoparticles composed of polycaprolactone-tethered donors and acceptors: enhanced near-infrared emission and compatibility for in vitro and in vivo bioimaging. Adv. Funct. Mater. 2018, 28, 1705226−1705238.
doi: 10.1002/adfm.v28.7
-
[6]
Jiang, N.; Ahmed, R.; Rifat, A. A.; Guo, J.; Yin, Y.; Montelongo, Y.; Butt, H.; Yetisen, A. K. Functionalized flexible soft polymer optical fibers for laser photomedicine. Adv. Optical Mater. 2018, 6, 1701118−1701127.
doi: 10.1002/adom.v6.3
-
[7]
Sylvie, R.; Tânia, R.; Clarisse, R.; Daniela, M. C.; José, P. S. F.; Andreia, C. G.; Carlos, B.; Senentxu, L. M. Multifunctional platform based on electroactive polymers and silica nanoparticles for tissue engineering applications. Nanomaterials 2018, 8, 933−952.
doi: 10.3390/nano8110933
-
[8]
Robert, G.; Chen, Y. C.; Lee, J. W.; Soman, P.; Zorlutuna, P.; Nichol, J. W.; Bae, H.; Chen, S.; Khademhosseini, A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012, 33, 3824−3834.
doi: 10.1016/j.biomaterials.2012.01.048
-
[9]
Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 2011, 50, 3430−3434.
doi: 10.1002/anie.201007461
-
[10]
Feng, W.; Jin, M.; Yang, K.; Pei, Y.; Pei, Z. Supramolecular delivery systems based on pillararenes. Chem. Commun. 2018, 54, 13626−13640.
doi: 10.1039/C8CC08252A
-
[11]
Reisch, A.; Heimburger, D.; Ernst, P.; Runser, A.; Didier, P.; Dujardin, D.; Klymchenko, A. S. Protein-sized dye-loaded polymer nanoparticles for free particle diffusion in cytosol. Adv. Funct. Mater. 2018, 28, 1805157−1805166.
doi: 10.1002/adfm.v28.48
-
[12]
Lou, X. Y.; Yang, Y. W. Manipulating aggregation-induced emission with supramolecular macrocycles. Adv. Optical Mater. 2018, 6, 1800668−1800692.
doi: 10.1002/adom.v6.22
-
[13]
Liu, F.; Zhao, X.; Zhang, X.; Zhang, X.; Peng, J.; Yang, H.; Deng, K.; Ma, L.; Chang, C.; Wei, H. Fabrication of theranostic amphiphilic conjugated bottlebrush copolymers with alternating heterografts for cell imaging and anticancer drug delivery. Polym. Chem. 2018, 9, 4866−4874.
doi: 10.1039/C8PY01221K
-
[14]
Liu, X.; Zhu, J.; Ouyang, K.; Yan, Q. Peroxynitrite-biosignal-responsive polymer micelles as intracellular hypersensitive nanoprobes. Polym. Chem. 2018, 9, 5075−5079.
doi: 10.1039/C8PY01110A
-
[15]
Zhang, P.; Wang, H.; Hong, Y.; Yu, M.; Zeng, R.; Long, Y.; Chen, J. Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens. Bioelectron. 2018, 99, 318−324.
doi: 10.1016/j.bios.2017.08.001
-
[16]
Zhao, C.; Zhang, X.; Li, K.; Zhu, S.; Guo, Z.; Zhang, L.; Wang, F.; Fei, Q.; Luo, S.; Shi, P.; Tian, H.; Zhu, W. H. Forster resonance energy transfer switchable self-assembled micellar nanoprobe: ratiometric fluorescent trapping of endogenous H2S generation via fluvastatin-stimulated upregulation. J. Am. Chem. Soc. 2015, 137, 8490−8498.
doi: 10.1021/jacs.5b03248
-
[17]
Rideau, E.; Wurm, F. R.; Landfester, K. Giant polymersomes from non-assisted film hydration of phosphate-based block copolymers. Polym. Chem. 2018, 9, 5385−5394.
doi: 10.1039/C8PY00992A
-
[18]
Zhang, N.; Chen, H.; Fan, Y.; Zhou, L.; Trepout, S.; Guo, J.; Li, M. H. Fluorescent polymersomes with aggregation-induced emission. ACS Nano 2018, 12, 4025−4035.
doi: 10.1021/acsnano.8b01755
-
[19]
Abdelmohsen, L. K. E.; Williams, A. D. S.; Pille, J.; Ozel, S. G.; Rikken, R. S. M.; Wilson, D. A.; van Hest, J. C. M. Formation of well-defined, functional nanotubes via osmotically induced shape transformation of biodegradable polymersomes. J. Am. Chem. Soc. 2016, 138, 9353−9356.
doi: 10.1021/jacs.6b03984
-
[20]
Kulkarni, P. S.; Haldar, M. K.; Confeld, M. I.; Langaas, C. J.; Yang, X.; Qian, S. Y.; Mallik, S. Mitochondria-targeted fluorescent polymersomes for drug delivery to cancer cells. Polym. Chem. 2016, 7, 4151−4154.
doi: 10.1039/C6PY00623J
-
[21]
Bratton, B. P.; Shaevitz, J. W.; Gitai, Z.; Morgenstein, R. M. MreB polymers and curvature localization are enhanced by RodZ and predict E. coli's cylindrical uniformity. Nat. Commun. 2018, 9, 2797.
-
[22]
Chang, D.; Huang, A.; Olsen, B. D. Kinetic effects on self-assembly and function of protein-polymer bioconjugates in thin films prepared by flow coating. Macromol. Rapid Commun. 2017, 38, 1600449−1600454.
doi: 10.1002/marc.v38.1
-
[23]
Thomas, C. S.; Olsen, B. D. Coil fraction-dependent phase behavior of a model globular protein-polymer diblock copolymer. Soft Matter 2014, 10, 3093−3102.
doi: 10.1039/C3SM52531G
-
[24]
Yu, G.; Zhao, R.; Shao, L.; Zhou, J.; Yang, J.; Huang, F.; Wu, D.; Tang, G.; Zhang, F.; Chen, X. Pillar[5]arene-based amphiphilic supramolecular brush copolymers: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery. Polym. Chem. 2016, 7, 6178−6188.
doi: 10.1039/C6PY01402J
-
[25]
Jie, K.; Zhou, Y.; Ji, X. A pH-responsive amphiphilic supramolecular graft copolymer constructed by crown ether based molecular recognition. Polym. Chem. 2015, 6, 218−222.
doi: 10.1039/C4PY01072H
-
[26]
Wang, Y.; Sukhishvili, S. A. All-aqueous nanoprecipitation: Spontaneous formation of hydrogen-bonded nanoparticles and nanocapsules mediated by phase separation of poly(N-isopropylacrylamide). Macromol. Rapid Commun. 2017, 38, 1700242−1700246.
doi: 10.1002/marc.v38.16
-
[27]
Wang, H.; Ji, X.; Li, Z.; Huang, F. Fluorescent supramolecular polymeric materials. Adv. Mater. 2017, 29, 1606117−1606138.
doi: 10.1002/adma.v29.14
-
[28]
Wang, R. F.; Peng, H. Q.; Chen, P. Z.; Niu, L. Y.; Gao, J. F.; Wu, L. Z.; Tung, C. H.; Chen, Y. Z.; Yang, Q. Z. A hydrogen-bonded-supramolecular-polymer-based nanoprobe for ratiometric oxygen sensing in living cells. Adv. Funct. Mater. 2016, 26, 5419−5425.
doi: 10.1002/adfm.201601831
-
[29]
Wang, W.; Han, J. J.; Wang, L. Q.; Li, L. S.; Shaw, W. J.; Li, A. D. Q. Dynamic π-π stacked molecular assemblies emit from green to red colors. Nano Lett. 2003, 3, 455−458.
doi: 10.1021/nl025976j
-
[30]
Lu, W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M. π-π Interactions in organometallic systems. Crystal structures and spectroscopic properties of luminescent mono-, bi-, and trinuclear trans-cyclometalated platinum(II) complexes derived from 2,6-diphenylpyridine. Organometallics 2001, 20, 2477−2486.
-
[31]
Nishizawa, S.; Kato, Y.; Teramae, N. Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor. J. Am. Chem. Soc. 1999, 121, 9463−9464.
doi: 10.1021/ja991497j
-
[32]
Yoshida, K.; Miyazaki, H.; Miura, Y.; Ooyama, Y.; Watanabe, S. Solid-surface fluorescence enhancement behavior of a benzofuranoquinol-type fluorescent host upon enclathration of alicyclic amines. Chem. Lett. 1999, 837−838.
-
[33]
Ban, Q.; Du, J.; Sun, W.; Chen, J.; Wu, S.; Kong, J. Intramolecular copper-containing hyperbranched polytriazole assemblies for label-free cellular bioimaging and redox-triggered copper complex delivery. Macromol. Rapid Commun. 2018, 39, 1800171−1800176.
doi: 10.1002/marc.v39.11
-
[34]
Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem. Soc. Rev. 2015, 44, 815−832.
doi: 10.1039/C4CS00327F
-
[35]
Hu, J.; Liu, S. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications. Acc. Chem. Res. 2014, 47, 2084−2095.
doi: 10.1021/ar5001007
-
[36]
Yang, H.; Yuan, B.; Zhang, X.; Scherman, O. A. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47, 2106−2115.
doi: 10.1021/ar500105t
-
[37]
Zhang, M.; Yan, X.; Huang, F.; Niu, Z.; Gibson, H. W. Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests. Acc. Chem. Res. 2014, 47, 1995−2005.
doi: 10.1021/ar500046r
-
[38]
Zhang, D. W.; Zhao, X.; Li, Z. T. Aromatic amide and hydrazide foldamer-based responsive host-guest systems. Acc. Chem. Res. 2014, 47, 1961−1970.
doi: 10.1021/ar5000242
-
[39]
Yang, Y. W.; Sun, Y. L.; Song, N. Switchable host-guest systems on surfaces. Acc. Chem. Res. 2014, 47, 1950−1960.
doi: 10.1021/ar500022f
-
[40]
Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734−777.
doi: 10.1021/cr3002824
-
[41]
Servant, A.; Qiu, F.; Mazza, M.; Kostarelos, K.; Nelson, B. J. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 2015, 27, 2981−2988.
doi: 10.1002/adma.201404444
-
[42]
Wang, H.; Su, W.; Wang, S.; Wang, X.; Liao, Z.; Kang, C.; Han, L.; Chang, J.; Wang, G.; Pu, P. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model. Nanoscale 2012, 4, 6501−6508.
doi: 10.1039/c2nr31263h
-
[43]
Zhang, Y. M.; Li, Y. F.; Fang, H.; He, J. X.; Yong, B. R.; Yao, H.; Wei, T. B.; Lin, Q. Multi-stimuli-responsive supramolecular gel constructed by pillar[5]arene-based pseudorotaxanes for efficient detection and separation of multi-analytes in aqueous solution. Soft Matter 2018, 14, 8529−8536.
doi: 10.1039/C8SM01838C
-
[44]
Han, Y.; Tian, Y.; Li, Z.; Wang, F. Donor-acceptor-type supramolecular polymers on the basis of preorganized molecular tweezers/guest complexation. Chem. Soc. Rev. 2018, 47, 5165−5176.
doi: 10.1039/C7CS00802C
-
[45]
Wei, T. B.; Chen, J. F.; Cheng, X. B.; Li, H.; Han, B. B.; Yao, H.; Zhang, Y. M.; Lin, Q. Construction of stimuli-responsive supramolecular gel via bispillar[5]arene-based multiple interactions. Polym. Chem. 2017, 8, 2005−2009.
doi: 10.1039/C7PY00335H
-
[46]
Ma, X.; Tian, H. Stimuli-responsive supramolecular polymers in aqueous solution. Acc. Chem. Res. 2014, 47, 1971−1981.
doi: 10.1021/ar500033n
-
[47]
Qi, Z.; Schalley, C. A. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry. Acc. Chem. Res. 2014, 47, 2222−2233.
doi: 10.1021/ar500193z
-
[48]
Ji, X. F.; Xia, D. Y.; Yan, X.; Wang, H.; Huang, F. H. Supramolecular polymer materials based on crown ether and pillararene host-guest recognition motifs. Acta Polymerica Sinica (in Chinese) 2017, 9−18.
-
[49]
Yang, J.; Shao, L.; Yuan, J.; Huang, F. Construction of a pillar[6]arene based water-soluble supramolecular pseudopolyrotaxane driven by cucurbit[8]uril-enhanced π-π interaction. Chem. Commun. 2016, 52, 12510−12512.
doi: 10.1039/C6CC07433B
-
[50]
Dhinakaran, M. K.; Gong, W.; Yin, Y.; Wajahat, A.; Kuang, X.; Wang, L.; Ning, G. Configuration-independent AIE-active supramole-cular polymers of cyanostilbene through the photo-stable host-guest interaction of pillar[5]arene. Polym. Chem. 2017, 8, 5295−5302.
doi: 10.1039/C7PY00845G
-
[51]
Wang, Y.; Lv, M. Z.; Song, N.; Liu, Z. J.; Wang, C.; Yang, Y. W. Dual-stimuli-responsive fluorescent supramolecular polymer based on a diselenium-bridged pillar[5]arene dimer and an AIE-active tetraphenylethylene guest. Macromolecules 2017, 50, 5759−5766.
doi: 10.1021/acs.macromol.7b01010
-
[52]
Hua, B.; Shao, L.; Zhang, Z.; Sun, J.; Yang, J. Pillar[6]arene/acridine orange host-guest complexes as colorimetric and fluorescence sensors for choline compounds and further application in monitoring enzymatic reactions. Sens. Actuators B 2018, 255, 1430−1435.
doi: 10.1016/j.snb.2017.08.141
-
[53]
Hu, X.; Wu, X.; Wang, S.; Chen, D.; Xia, W.; Lin, C.; Pan, Y.; Wang, L. Pillar[5]arene-based supramolecular polypseudorotaxane polymer networks constructed by orthogonal self-assembly. Polym. Chem. 2013, 4, 4292−4297.
doi: 10.1039/c3py00575e
-
[54]
Li, E.; Jie, K.; Zhou, Y.; Zhao, R.; Huang, F. Post-synthetic modification of nonporous adaptive crystals of pillar[4]-arene[1]quinone by capturing vaporized amines. J. Am. Chem. Soc. 2018, 140, 15070−15079.
doi: 10.1021/jacs.8b10192
-
[55]
Li, Z.; Zhang, Y.; Zhang, C.; Chen, L. J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H. B. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 2014, 136, 8577−8589.
doi: 10.1021/ja413047r
-
[56]
Xu, J. F.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Dynamic covalent bond based on reversible [4+4] photocycloaddition of anthracene for construction of double-dynamic polymers. Org. Lett. 2013, 15, 6148−6151.
doi: 10.1021/ol403015s
-
[57]
Jie, K.; Zhou, Y.; Li, E.; Zhao, R.; Huang, F. Separation of aromatics/cyclic aliphatics by nonporous adaptive pillararene crystals. Angew. Chem. Int. Ed. 2018, 57, 12845−12849.
doi: 10.1002/anie.201808998
-
[58]
Cao, D.; Kou, Y.; Liang, J.; Chen, Z.; Wang, L.; Meier, H. A facile and efficient preparation of pillararenes and a pillarquinone. Angew. Chem. Int. Ed. 2009, 48, 9721−9723.
doi: 10.1002/anie.200904765
-
[59]
Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. Para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J. Am. Chem. Soc. 2008, 130, 5022−5023.
doi: 10.1021/ja711260m
-
[60]
Zhang, H.; Liu, Z.; Zhao, Y. Pillararene-based self-assembled amphiphiles. Chem. Soc. Rev. 2018, 47, 5491−5528.
doi: 10.1039/C8CS00037A
-
[61]
Yu, G.; Yang, J.; Fu, X.; Wang, Z.; Shao, L.; Mao, Z.; Liu, Y.; Yang, Z.; Zhang, F.; Fan, W.; Song, J.; Zhou, Z.; Gao, C.; Huang, F.; Chen, X. A supramolecular hybrid material constructed from graphene oxide and a pillar[6]arene-based host-guest complex as an ultrasound and photoacoustic signal nanoampli. Mater. Horiz. 2018, 5, 429−435.
doi: 10.1039/C8MH00128F
-
[62]
Jie, K.; Zhou, Y.; Li, E.; Li, Z.; Zhao, R.; Huang, F. Reversible iodine capture by nonporous pillar[6]arene crystals. J. Am. Chem. Soc. 2017, 139, 15320−15323.
doi: 10.1021/jacs.7b09850
-
[63]
Jie, K.; Liu, M.; Zhou, Y.; Little, M. A.; Bonakala, S.; S. Chong, Y.; Stephenson, A.; Chen, L.; Huang, F.; Cooper, A. I. Styrene purification by guest-induced restructuring of pillar[6]arene. J. Am. Chem. Soc. 2017, 139, 2908−2911.
doi: 10.1021/jacs.6b13300
-
[64]
Dong, R.; Zhou, Y.; Huang, X.; Zhu, X.; Lu, Y.; Shen, J. Functional supramolecular polymers for biomedical applications. Adv. Mater. 2015, 27, 498−526.
doi: 10.1002/adma.v27.3
-
[65]
Mei, J.; Huang, Y.; Tian, H. Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl. Mater. Interfaces 2018, 10, 12217−12261.
doi: 10.1021/acsami.7b14343
-
[66]
Furue, R.; Nishimoto, T.; Park, I. S.; Lee, J.; Yasuda, T. Aggregation-induced delayed fluorescence based on donor/acceptor-tethered Janus carborane triads: unique photophysical properties of nondoped OLEDs. Angew. Chem. Int. Ed. 2016, 55, 7171−7175.
doi: 10.1002/anie.201603232
-
[67]
Yan, X.; Wang, M.; Cook, T. R.; Zhang, M.; Saha, M. L.; Zhou, Z.; Li, X.; Huang, F.; Stang, P. J. Light-emitting superstructures with anion effect: coordination-driven self-assembly of pure tetraphenylethylene metallacycles and metallacages. J. Am. Chem. Soc. 2016, 138, 4580−4588.
doi: 10.1021/jacs.6b00846
-
[68]
Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570−6597.
doi: 10.1039/C4CS00014E
-
[69]
Luo, J.; Xie, Z. J.; Lam, W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740−1741.
doi: 10.1039/B105159H
-
[70]
Ji, X.; Li, Y.; Wang, H.; Zhao, R.; Tang, G.; Huang, F. Facile construction of fluorescent polymeric aggregates with various morphologies by self-assembly of supramolecular amphiphilic graft copolymers. Polym. Chem. 2015, 28, 5021−5025.
doi: 10.1039/C5PY00801H