Citation: Run Zhao, Yu-Juan Zhou, Ke-Cheng Jie, Jie Yang, Sébastien Perrier, Fei-He Huang. Fluorescent Supramolecular Polymersomes Based on Pillararene/Paraquat Molecular Recognition for pH-controlled Drug Release[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 1-8. doi: 10.1007/s10118-019-2305-1 shu

Fluorescent Supramolecular Polymersomes Based on Pillararene/Paraquat Molecular Recognition for pH-controlled Drug Release

  • Researchers have put significant efforts on developing versatile fluorescent polymeric systems due to their promising biological/biomedical labelling, tracking, monitoring, imaging, and diagnostic applications. However, complicated organic/polymeric synthesis or post-modification of these functionalized platforms is still a big obstacle for their further application and thereby provides clear motivation for exploring alternative strategies for the design and fabrication of easily available fluorescent systems. The marriage of supramolecular polymers and fluorescent imaging can provide a facile and dynamic manner instead of tedious and time-consuming synthesis due to the dynamic and reversible nature of noncovalent interactions. Herein, based on water-soluble pillararene/paraquat molecular recognition, we successfully prepare two amphiphilic polypseudorotaxanes which can self-assemble into supramolecular polymersomes in water. These polymersomes can be reversibly destroyed and reformed by tuning the solution pH. Attributed to the aggregation-induced emission of tetraphenylethylene groups, intense fluorescence can be introduced into the obtained supramolecular polymersomes. Furthermore, pH-triggered release of an encapsulated water-insoluble drug (doxorubicin) from the self-assembled fluorescent supramolecular polymersomes is also investigated.
  • 加载中
    1. [1]

      Yang, Z.; He, Y.; Lee, J. H.; Park, N.; Suh, M.; Chae, W. S.; Cao, J.; Peng, X.; Jung, H.; Kang, C.; Kim, J. S. A self-calibrating bipartite viscosity sensor for mitochondria. J. Am. Chem. Soc. 2013, 135, 9181−9185.  doi: 10.1021/ja403851p

    2. [2]

      Yu, G.; Zhang, M.; Saha, M. L.; Mao, Z.; Chen, J.; Yao, Y.; Zhou, Z.; Liu, Y.; Gao, C.; Huang, F.; Chen, X.; Stang, P. J. Antitumor activity of a unique polymer that incorporates a fluorescent self-assembled metallacycle. J. Am. Chem. Soc. 2017, 139, 15940−15949.  doi: 10.1021/jacs.7b09224

    3. [3]

      Peng, H. Q.; Sun, C. L.; Niu, L. Y.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Supramolecular polymeric fluorescent nanoparticles based on quadruple hydrogen bonds. Adv. Funct. Mater. 2016, 26, 5483−5489.  doi: 10.1002/adfm.201600593

    4. [4]

      Sun, C. L.; Xu, J. F.; Chen, Y. Z.; Niu, L. Y.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Synthesis of a disulfide-bridged bispillar[5]arene and its application in supramolecular polymers. Polym. Chem. 2016, 7, 2057−2061.  doi: 10.1039/C6PY00148C

    5. [5]

      Yang, C.; Wang, X.; Huang, S.; Wang, M. Tunable Forster resonance energy transfer in colloidal nanoparticles composed of polycaprolactone-tethered donors and acceptors: enhanced near-infrared emission and compatibility for in vitro and in vivo bioimaging. Adv. Funct. Mater. 2018, 28, 1705226−1705238.  doi: 10.1002/adfm.v28.7

    6. [6]

      Jiang, N.; Ahmed, R.; Rifat, A. A.; Guo, J.; Yin, Y.; Montelongo, Y.; Butt, H.; Yetisen, A. K. Functionalized flexible soft polymer optical fibers for laser photomedicine. Adv. Optical Mater. 2018, 6, 1701118−1701127.  doi: 10.1002/adom.v6.3

    7. [7]

      Sylvie, R.; Tânia, R.; Clarisse, R.; Daniela, M. C.; José, P. S. F.; Andreia, C. G.; Carlos, B.; Senentxu, L. M. Multifunctional platform based on electroactive polymers and silica nanoparticles for tissue engineering applications. Nanomaterials 2018, 8, 933−952.  doi: 10.3390/nano8110933

    8. [8]

      Robert, G.; Chen, Y. C.; Lee, J. W.; Soman, P.; Zorlutuna, P.; Nichol, J. W.; Bae, H.; Chen, S.; Khademhosseini, A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012, 33, 3824−3834.  doi: 10.1016/j.biomaterials.2012.01.048

    9. [9]

      Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 2011, 50, 3430−3434.  doi: 10.1002/anie.201007461

    10. [10]

      Feng, W.; Jin, M.; Yang, K.; Pei, Y.; Pei, Z. Supramolecular delivery systems based on pillararenes. Chem. Commun. 2018, 54, 13626−13640.  doi: 10.1039/C8CC08252A

    11. [11]

      Reisch, A.; Heimburger, D.; Ernst, P.; Runser, A.; Didier, P.; Dujardin, D.; Klymchenko, A. S. Protein-sized dye-loaded polymer nanoparticles for free particle diffusion in cytosol. Adv. Funct. Mater. 2018, 28, 1805157−1805166.  doi: 10.1002/adfm.v28.48

    12. [12]

      Lou, X. Y.; Yang, Y. W. Manipulating aggregation-induced emission with supramolecular macrocycles. Adv. Optical Mater. 2018, 6, 1800668−1800692.  doi: 10.1002/adom.v6.22

    13. [13]

      Liu, F.; Zhao, X.; Zhang, X.; Zhang, X.; Peng, J.; Yang, H.; Deng, K.; Ma, L.; Chang, C.; Wei, H. Fabrication of theranostic amphiphilic conjugated bottlebrush copolymers with alternating heterografts for cell imaging and anticancer drug delivery. Polym. Chem. 2018, 9, 4866−4874.  doi: 10.1039/C8PY01221K

    14. [14]

      Liu, X.; Zhu, J.; Ouyang, K.; Yan, Q. Peroxynitrite-biosignal-responsive polymer micelles as intracellular hypersensitive nanoprobes. Polym. Chem. 2018, 9, 5075−5079.  doi: 10.1039/C8PY01110A

    15. [15]

      Zhang, P.; Wang, H.; Hong, Y.; Yu, M.; Zeng, R.; Long, Y.; Chen, J. Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens. Bioelectron. 2018, 99, 318−324.  doi: 10.1016/j.bios.2017.08.001

    16. [16]

      Zhao, C.; Zhang, X.; Li, K.; Zhu, S.; Guo, Z.; Zhang, L.; Wang, F.; Fei, Q.; Luo, S.; Shi, P.; Tian, H.; Zhu, W. H. Forster resonance energy transfer switchable self-assembled micellar nanoprobe: ratiometric fluorescent trapping of endogenous H2S generation via fluvastatin-stimulated upregulation. J. Am. Chem. Soc. 2015, 137, 8490−8498.  doi: 10.1021/jacs.5b03248

    17. [17]

      Rideau, E.; Wurm, F. R.; Landfester, K. Giant polymersomes from non-assisted film hydration of phosphate-based block copolymers. Polym. Chem. 2018, 9, 5385−5394.  doi: 10.1039/C8PY00992A

    18. [18]

      Zhang, N.; Chen, H.; Fan, Y.; Zhou, L.; Trepout, S.; Guo, J.; Li, M. H. Fluorescent polymersomes with aggregation-induced emission. ACS Nano 2018, 12, 4025−4035.  doi: 10.1021/acsnano.8b01755

    19. [19]

      Abdelmohsen, L. K. E.; Williams, A. D. S.; Pille, J.; Ozel, S. G.; Rikken, R. S. M.; Wilson, D. A.; van Hest, J. C. M. Formation of well-defined, functional nanotubes via osmotically induced shape transformation of biodegradable polymersomes. J. Am. Chem. Soc. 2016, 138, 9353−9356.  doi: 10.1021/jacs.6b03984

    20. [20]

      Kulkarni, P. S.; Haldar, M. K.; Confeld, M. I.; Langaas, C. J.; Yang, X.; Qian, S. Y.; Mallik, S. Mitochondria-targeted fluorescent polymersomes for drug delivery to cancer cells. Polym. Chem. 2016, 7, 4151−4154.  doi: 10.1039/C6PY00623J

    21. [21]

      Bratton, B. P.; Shaevitz, J. W.; Gitai, Z.; Morgenstein, R. M. MreB polymers and curvature localization are enhanced by RodZ and predict E. coli's cylindrical uniformity. Nat. Commun. 2018, 9, 2797.

    22. [22]

      Chang, D.; Huang, A.; Olsen, B. D. Kinetic effects on self-assembly and function of protein-polymer bioconjugates in thin films prepared by flow coating. Macromol. Rapid Commun. 2017, 38, 1600449−1600454.  doi: 10.1002/marc.v38.1

    23. [23]

      Thomas, C. S.; Olsen, B. D. Coil fraction-dependent phase behavior of a model globular protein-polymer diblock copolymer. Soft Matter 2014, 10, 3093−3102.  doi: 10.1039/C3SM52531G

    24. [24]

      Yu, G.; Zhao, R.; Shao, L.; Zhou, J.; Yang, J.; Huang, F.; Wu, D.; Tang, G.; Zhang, F.; Chen, X. Pillar[5]arene-based amphiphilic supramolecular brush copolymers: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery. Polym. Chem. 2016, 7, 6178−6188.  doi: 10.1039/C6PY01402J

    25. [25]

      Jie, K.; Zhou, Y.; Ji, X. A pH-responsive amphiphilic supramolecular graft copolymer constructed by crown ether based molecular recognition. Polym. Chem. 2015, 6, 218−222.  doi: 10.1039/C4PY01072H

    26. [26]

      Wang, Y.; Sukhishvili, S. A. All-aqueous nanoprecipitation: Spontaneous formation of hydrogen-bonded nanoparticles and nanocapsules mediated by phase separation of poly(N-isopropylacrylamide). Macromol. Rapid Commun. 2017, 38, 1700242−1700246.  doi: 10.1002/marc.v38.16

    27. [27]

      Wang, H.; Ji, X.; Li, Z.; Huang, F. Fluorescent supramolecular polymeric materials. Adv. Mater. 2017, 29, 1606117−1606138.  doi: 10.1002/adma.v29.14

    28. [28]

      Wang, R. F.; Peng, H. Q.; Chen, P. Z.; Niu, L. Y.; Gao, J. F.; Wu, L. Z.; Tung, C. H.; Chen, Y. Z.; Yang, Q. Z. A hydrogen-bonded-supramolecular-polymer-based nanoprobe for ratiometric oxygen sensing in living cells. Adv. Funct. Mater. 2016, 26, 5419−5425.  doi: 10.1002/adfm.201601831

    29. [29]

      Wang, W.; Han, J. J.; Wang, L. Q.; Li, L. S.; Shaw, W. J.; Li, A. D. Q. Dynamic π-π stacked molecular assemblies emit from green to red colors. Nano Lett. 2003, 3, 455−458.  doi: 10.1021/nl025976j

    30. [30]

      Lu, W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M. π-π Interactions in organometallic systems. Crystal structures and spectroscopic properties of luminescent mono-, bi-, and trinuclear trans-cyclometalated platinum(II) complexes derived from 2,6-diphenylpyridine. Organometallics 2001, 20, 2477−2486.

    31. [31]

      Nishizawa, S.; Kato, Y.; Teramae, N. Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor. J. Am. Chem. Soc. 1999, 121, 9463−9464.  doi: 10.1021/ja991497j

    32. [32]

      Yoshida, K.; Miyazaki, H.; Miura, Y.; Ooyama, Y.; Watanabe, S. Solid-surface fluorescence enhancement behavior of a benzofuranoquinol-type fluorescent host upon enclathration of alicyclic amines. Chem. Lett. 1999, 837−838.

    33. [33]

      Ban, Q.; Du, J.; Sun, W.; Chen, J.; Wu, S.; Kong, J. Intramolecular copper-containing hyperbranched polytriazole assemblies for label-free cellular bioimaging and redox-triggered copper complex delivery. Macromol. Rapid Commun. 2018, 39, 1800171−1800176.  doi: 10.1002/marc.v39.11

    34. [34]

      Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem. Soc. Rev. 2015, 44, 815−832.  doi: 10.1039/C4CS00327F

    35. [35]

      Hu, J.; Liu, S. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications. Acc. Chem. Res. 2014, 47, 2084−2095.  doi: 10.1021/ar5001007

    36. [36]

      Yang, H.; Yuan, B.; Zhang, X.; Scherman, O. A. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47, 2106−2115.  doi: 10.1021/ar500105t

    37. [37]

      Zhang, M.; Yan, X.; Huang, F.; Niu, Z.; Gibson, H. W. Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests. Acc. Chem. Res. 2014, 47, 1995−2005.  doi: 10.1021/ar500046r

    38. [38]

      Zhang, D. W.; Zhao, X.; Li, Z. T. Aromatic amide and hydrazide foldamer-based responsive host-guest systems. Acc. Chem. Res. 2014, 47, 1961−1970.  doi: 10.1021/ar5000242

    39. [39]

      Yang, Y. W.; Sun, Y. L.; Song, N. Switchable host-guest systems on surfaces. Acc. Chem. Res. 2014, 47, 1950−1960.  doi: 10.1021/ar500022f

    40. [40]

      Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734−777.  doi: 10.1021/cr3002824

    41. [41]

      Servant, A.; Qiu, F.; Mazza, M.; Kostarelos, K.; Nelson, B. J. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 2015, 27, 2981−2988.  doi: 10.1002/adma.201404444

    42. [42]

      Wang, H.; Su, W.; Wang, S.; Wang, X.; Liao, Z.; Kang, C.; Han, L.; Chang, J.; Wang, G.; Pu, P. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model. Nanoscale 2012, 4, 6501−6508.  doi: 10.1039/c2nr31263h

    43. [43]

      Zhang, Y. M.; Li, Y. F.; Fang, H.; He, J. X.; Yong, B. R.; Yao, H.; Wei, T. B.; Lin, Q. Multi-stimuli-responsive supramolecular gel constructed by pillar[5]arene-based pseudorotaxanes for efficient detection and separation of multi-analytes in aqueous solution. Soft Matter 2018, 14, 8529−8536.  doi: 10.1039/C8SM01838C

    44. [44]

      Han, Y.; Tian, Y.; Li, Z.; Wang, F. Donor-acceptor-type supramolecular polymers on the basis of preorganized molecular tweezers/guest complexation. Chem. Soc. Rev. 2018, 47, 5165−5176.  doi: 10.1039/C7CS00802C

    45. [45]

      Wei, T. B.; Chen, J. F.; Cheng, X. B.; Li, H.; Han, B. B.; Yao, H.; Zhang, Y. M.; Lin, Q. Construction of stimuli-responsive supramolecular gel via bispillar[5]arene-based multiple interactions. Polym. Chem. 2017, 8, 2005−2009.  doi: 10.1039/C7PY00335H

    46. [46]

      Ma, X.; Tian, H. Stimuli-responsive supramolecular polymers in aqueous solution. Acc. Chem. Res. 2014, 47, 1971−1981.  doi: 10.1021/ar500033n

    47. [47]

      Qi, Z.; Schalley, C. A. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry. Acc. Chem. Res. 2014, 47, 2222−2233.  doi: 10.1021/ar500193z

    48. [48]

      Ji, X. F.; Xia, D. Y.; Yan, X.; Wang, H.; Huang, F. H. Supramolecular polymer materials based on crown ether and pillararene host-guest recognition motifs. Acta Polymerica Sinica (in Chinese) 2017, 9−18.

    49. [49]

      Yang, J.; Shao, L.; Yuan, J.; Huang, F. Construction of a pillar[6]arene based water-soluble supramolecular pseudopolyrotaxane driven by cucurbit[8]uril-enhanced π-π interaction. Chem. Commun. 2016, 52, 12510−12512.  doi: 10.1039/C6CC07433B

    50. [50]

      Dhinakaran, M. K.; Gong, W.; Yin, Y.; Wajahat, A.; Kuang, X.; Wang, L.; Ning, G. Configuration-independent AIE-active supramole-cular polymers of cyanostilbene through the photo-stable host-guest interaction of pillar[5]arene. Polym. Chem. 2017, 8, 5295−5302.  doi: 10.1039/C7PY00845G

    51. [51]

      Wang, Y.; Lv, M. Z.; Song, N.; Liu, Z. J.; Wang, C.; Yang, Y. W. Dual-stimuli-responsive fluorescent supramolecular polymer based on a diselenium-bridged pillar[5]arene dimer and an AIE-active tetraphenylethylene guest. Macromolecules 2017, 50, 5759−5766.  doi: 10.1021/acs.macromol.7b01010

    52. [52]

      Hua, B.; Shao, L.; Zhang, Z.; Sun, J.; Yang, J. Pillar[6]arene/acridine orange host-guest complexes as colorimetric and fluorescence sensors for choline compounds and further application in monitoring enzymatic reactions. Sens. Actuators B 2018, 255, 1430−1435.  doi: 10.1016/j.snb.2017.08.141

    53. [53]

      Hu, X.; Wu, X.; Wang, S.; Chen, D.; Xia, W.; Lin, C.; Pan, Y.; Wang, L. Pillar[5]arene-based supramolecular polypseudorotaxane polymer networks constructed by orthogonal self-assembly. Polym. Chem. 2013, 4, 4292−4297.  doi: 10.1039/c3py00575e

    54. [54]

      Li, E.; Jie, K.; Zhou, Y.; Zhao, R.; Huang, F. Post-synthetic modification of nonporous adaptive crystals of pillar[4]-arene[1]quinone by capturing vaporized amines. J. Am. Chem. Soc. 2018, 140, 15070−15079.  doi: 10.1021/jacs.8b10192

    55. [55]

      Li, Z.; Zhang, Y.; Zhang, C.; Chen, L. J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H. B. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 2014, 136, 8577−8589.  doi: 10.1021/ja413047r

    56. [56]

      Xu, J. F.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Dynamic covalent bond based on reversible [4+4] photocycloaddition of anthracene for construction of double-dynamic polymers. Org. Lett. 2013, 15, 6148−6151.  doi: 10.1021/ol403015s

    57. [57]

      Jie, K.; Zhou, Y.; Li, E.; Zhao, R.; Huang, F. Separation of aromatics/cyclic aliphatics by nonporous adaptive pillararene crystals. Angew. Chem. Int. Ed. 2018, 57, 12845−12849.  doi: 10.1002/anie.201808998

    58. [58]

      Cao, D.; Kou, Y.; Liang, J.; Chen, Z.; Wang, L.; Meier, H. A facile and efficient preparation of pillararenes and a pillarquinone. Angew. Chem. Int. Ed. 2009, 48, 9721−9723.  doi: 10.1002/anie.200904765

    59. [59]

      Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. Para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J. Am. Chem. Soc. 2008, 130, 5022−5023.  doi: 10.1021/ja711260m

    60. [60]

      Zhang, H.; Liu, Z.; Zhao, Y. Pillararene-based self-assembled amphiphiles. Chem. Soc. Rev. 2018, 47, 5491−5528.  doi: 10.1039/C8CS00037A

    61. [61]

      Yu, G.; Yang, J.; Fu, X.; Wang, Z.; Shao, L.; Mao, Z.; Liu, Y.; Yang, Z.; Zhang, F.; Fan, W.; Song, J.; Zhou, Z.; Gao, C.; Huang, F.; Chen, X. A supramolecular hybrid material constructed from graphene oxide and a pillar[6]arene-based host-guest complex as an ultrasound and photoacoustic signal nanoampli. Mater. Horiz. 2018, 5, 429−435.  doi: 10.1039/C8MH00128F

    62. [62]

      Jie, K.; Zhou, Y.; Li, E.; Li, Z.; Zhao, R.; Huang, F. Reversible iodine capture by nonporous pillar[6]arene crystals. J. Am. Chem. Soc. 2017, 139, 15320−15323.  doi: 10.1021/jacs.7b09850

    63. [63]

      Jie, K.; Liu, M.; Zhou, Y.; Little, M. A.; Bonakala, S.; S. Chong, Y.; Stephenson, A.; Chen, L.; Huang, F.; Cooper, A. I. Styrene purification by guest-induced restructuring of pillar[6]arene. J. Am. Chem. Soc. 2017, 139, 2908−2911.  doi: 10.1021/jacs.6b13300

    64. [64]

      Dong, R.; Zhou, Y.; Huang, X.; Zhu, X.; Lu, Y.; Shen, J. Functional supramolecular polymers for biomedical applications. Adv. Mater. 2015, 27, 498−526.  doi: 10.1002/adma.v27.3

    65. [65]

      Mei, J.; Huang, Y.; Tian, H. Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl. Mater. Interfaces 2018, 10, 12217−12261.  doi: 10.1021/acsami.7b14343

    66. [66]

      Furue, R.; Nishimoto, T.; Park, I. S.; Lee, J.; Yasuda, T. Aggregation-induced delayed fluorescence based on donor/acceptor-tethered Janus carborane triads: unique photophysical properties of nondoped OLEDs. Angew. Chem. Int. Ed. 2016, 55, 7171−7175.  doi: 10.1002/anie.201603232

    67. [67]

      Yan, X.; Wang, M.; Cook, T. R.; Zhang, M.; Saha, M. L.; Zhou, Z.; Li, X.; Huang, F.; Stang, P. J. Light-emitting superstructures with anion effect: coordination-driven self-assembly of pure tetraphenylethylene metallacycles and metallacages. J. Am. Chem. Soc. 2016, 138, 4580−4588.  doi: 10.1021/jacs.6b00846

    68. [68]

      Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570−6597.  doi: 10.1039/C4CS00014E

    69. [69]

      Luo, J.; Xie, Z. J.; Lam, W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740−1741.  doi: 10.1039/B105159H

    70. [70]

      Ji, X.; Li, Y.; Wang, H.; Zhao, R.; Tang, G.; Huang, F. Facile construction of fluorescent polymeric aggregates with various morphologies by self-assembly of supramolecular amphiphilic graft copolymers. Polym. Chem. 2015, 28, 5021−5025.  doi: 10.1039/C5PY00801H

  • 加载中
    1. [1]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    2. [2]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    3. [3]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    6. [6]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    7. [7]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    8. [8]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    9. [9]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    10. [10]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    11. [11]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    12. [12]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    13. [13]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    16. [16]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    17. [17]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    18. [18]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    19. [19]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    20. [20]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

Metrics
  • PDF Downloads(0)
  • Abstract views(782)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return