Citation: Ning Xu. Phase Behaviors of Soft-core Particle Systems[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1065-1082. doi: 10.1007/s10118-019-2304-2 shu

Phase Behaviors of Soft-core Particle Systems

  • Corresponding author: Ning Xu, ningxu@ustc.edu.cn
  • Received Date: 24 April 2019
    Revised Date: 21 May 2019
    Available Online: 9 July 2019

  • This paper reviews some of our recent works on phase behaviors of particulate systems with a soft-core interaction potential. The potential is purely repulsive and bounded, i.e., it is finite even when two particles completely overlap. The one-sided linear spring (harmonic) potential is one of the representatives. This model system has been successively employed to study the jamming transition, i.e., the formation of rigid and disordered packings of hard particles, and establish the jamming physics. This is actually based on the " hard” aspect of the potential, because at low densities and when particle overlap is tiny the potential resembles the hard sphere limit. At high densities, the potential exhibits its " soft” aspect: with the increase of density, there are successive reentrant crystallizations with many types of solid phases. Taking advantage of the dual nature of the potential, we investigate the criticality of the jamming transition from different perspectives, extend the jamming scenario to high densities, reveal the novel density evolution of two-dimensional melting, and find unexpected formation of quasicrystals. It is surprising that such a simple potential can exhibit so rich and unexpected phenomena in phase transitions. The phase behaviors discussed in this paper are also highly regarded in polymer science, which may thus shed light on our understanding of polymeric systems or inspire new ideas in studies of polymers.
  • 加载中
    1. [1]

      Debenedetti, P. G.; Stillinger, F. H. Supercooled liquids and the glass transition. Nature 2001, 410, 259–267.  doi: 10.1038/35065704

    2. [2]

      Berthier, L.; Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. of Mod. Phys. 2011, 83, 587–645.  doi: 10.1103/RevModPhys.83.587

    3. [3]

      Ediger, M. D.; Harrowell, P. Perspective: Supercooled liquids and glasses. J. Chem. Phys. 2012, 137, 080901.  doi: 10.1063/1.4747326

    4. [4]

      Strandburg, K. J. Two-dimensional melting. Rev. Mod. Phys. 1988, 60, 161–207.  doi: 10.1103/RevModPhys.60.161

    5. [5]

      Dash, J. G. History of the search for continuous melting. Rev. Mod. Phys. 1999, 71, 1737–1743.  doi: 10.1103/RevModPhys.71.1737

    6. [6]

      Gasser, U. Crystallization in three- and two-dimensional colloidal suspensions. J. Phys.-Condens. Matter 2009, 21, 203101.  doi: 10.1088/0953-8984/21/20/203101

    7. [7]

      Kosterlitz, J. M.; Thouless, D. J. Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C-Solid State Phys. 1973, 6, 1181–1203.  doi: 10.1088/0022-3719/6/7/010

    8. [8]

      Halperin, B. I.; Nelson, D. R. Theory of 2-dimensional melting. Phys. Rev. Lett. 1978, 41, 121–124.  doi: 10.1103/PhysRevLett.41.121

    9. [9]

      Nelson, D. R.; Halperin, B. I. Dislocation-mediated melting in 2 dimensions. Phys. Rev. B 1979, 19, 2457–2484.  doi: 10.1103/PhysRevB.19.2457

    10. [10]

      Young, A. P. Melting and the vector coulomb gas in 2 dimensions. Phys. Rev. B 1979, 19, 1855–1866.  doi: 10.1103/PhysRevB.19.1855

    11. [11]

      Bladon, P.; Frenkel, D. Dislocation unbinding in dense 2-dimensional crystals. Phys. Rev. Lett. 1995, 74, 2519–2522.  doi: 10.1103/PhysRevLett.74.2519

    12. [12]

      Marcus, A. H.; Rice, S. A. Observations of first-order liquid-to-hexatic and hexaticto-solid phase transitions in a confined colloid suspension. Phys. Rev. Lett. 1996, 77, 2577–2580.  doi: 10.1103/PhysRevLett.77.2577

    13. [13]

      Murray, C. A.; Vanwinkle, D. H. Experimental-observation of 2-stage melting in a classical two-dimensional screened coulomb system. Phys. Rev. Lett. 1987, 58, 1200–1203.  doi: 10.1103/PhysRevLett.58.1200

    14. [14]

      Zahn, K.; Lenke, R.; Maret, G. Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys. Rev. Lett. 1999, 82, 2721–2724.  doi: 10.1103/PhysRevLett.82.2721

    15. [15]

      von Grunberg, H. H.; Keim, P.; Zahn, K.; Maret, G. Elastic behavior of a twodimensional crystal near melting. Phys. Rev. Lett. 2004, 93, 255703.  doi: 10.1103/PhysRevLett.93.255703

    16. [16]

      Lin, B.-J.; Chen, L.-J. Phase transitions in two-dimensional colloidal particles at oil/water interfaces. J. Chem. Phys. 2007, 126, 034706.  doi: 10.1063/1.2409677

    17. [17]

      Qi, W.-K.; Wang, Z.; Han, Y.; Chen, Y. Melting in two-dimensional Yukawa systems: A Brownian dynamics simulation. J. Chem. Phys. 2010, 133, 234508.  doi: 10.1063/1.3506875

    18. [18]

      Shiba, H.; Onuki, A.; Araki, T. Structural and dynamical heterogeneities in twodimensional melting. Europhys. Lett. 2009, 86, 66004.  doi: 10.1209/0295-5075/86/66004

    19. [19]

      Prestipino, S.; Saija, F.; Giaquinta, P. V. Hexatic phase and water-like anomalies in a two-dimensional fluid of particles with a weakly softened core. J. Chem. Phys. 2012, 137, 104503.  doi: 10.1063/1.4749260

    20. [20]

      Alba-Simionesco, C.; Coasne, B.; Dosseh, G.; Dudziak, G.; Gubbins, K. E.; Radhakrishnan, R.; Sliwinska-Bartkowiak, M. Effects of confinement on freezing and melting. J. Phys.-Condens. Matter 2006, 18, R15–R68.  doi: 10.1088/0953-8984/18/6/R01

    21. [21]

      Chui, S. T. Grain-boundary theory of melting in 2 dimensions. Phys. Rev. Lett. 1982, 48, 933–935.  doi: 10.1103/PhysRevLett.48.933

    22. [22]

      Lansac, Y.; Glaser, M. A.; Clark, N. A. Discrete elastic model for two-dimensional melting. Phys. Rev. E 2006, 73, 041501.  doi: 10.1103/PhysRevE.73.041501

    23. [23]

      Almudallal, A. M.; Buldyrev, S. V.; Saika-Voivod, I. Inverse melting in a twodimensional off-lattice model. J. Chem. Phys. 2014, 140, 144505.  doi: 10.1063/1.4870086

    24. [24]

      Bernard, E. P.; Krauth, W. Two-step melting in two dimensions: First-order liquidhexatic transition. Phys. Rev. Lett. 2011, 107, 155704.  doi: 10.1103/PhysRevLett.107.155704

    25. [25]

      Engel, M.; Anderson, J. A.; Glotzer, S. C.; Isobe, M.; Bernard, E. P.; Krauth, W. Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods. Phys. Rev. E 2013, 87, 042134.  doi: 10.1103/PhysRevE.87.042134

    26. [26]

      Kapfer, S. C.; Krauth, W. Two-dimensional melting: From liquid-hexatic coexistence to continuous transitions. Phys. Rev. Lett. 2015, 114, 035702.  doi: 10.1103/PhysRevLett.114.035702

    27. [27]

      Terao, T. Tetratic phase of Hertzian spheres: Monte Carlo simulation. J. Chem. Phys. 2013, 139, 134501.  doi: 10.1063/1.4822101

    28. [28]

      Zu, M. J.; Liu, J.; Tong, H.; Xu, N. Density affects the nature of the hexatic-liquid transition in two-dimensional melting of soft-core systems. Phys. Rev. Lett. 2016, 117, 085702.  doi: 10.1103/PhysRevLett.117.085702

    29. [29]

      Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953.  doi: 10.1103/PhysRevLett.53.1951

    30. [30]

      Levine, D.; Steinhardt, P. J. Quasicrystals - A new class of ordered structures. Phys. Rev. Lett. 1984, 53, 2477–2480.  doi: 10.1103/PhysRevLett.53.2477

    31. [31]

      Steurer, W. Twenty years of structure research on quasicrystals. Part 1. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. F. Kristallographie 2004, 219, 391–446.

    32. [32]

      Dzugutov, M. Formation of a dodecagonal quasi-crystalline phase in a simple monatomic liquid. Phys. Rev. Lett. 1993, 70, 2924–2927.  doi: 10.1103/PhysRevLett.70.2924

    33. [33]

      Engel, M.; Trebin, H.-R. Self-assembly of monatomic complex crystals and quasicrystals with a double-well interaction potential. Phys. Rev. Lett. 2007, 98, 225505.  doi: 10.1103/PhysRevLett.98.225505

    34. [34]

      Iacovella, C. R.; Keys, A. S.; Glotzer, S. C. Self-assembly of soft-matter quasicrystals and their approximants. Proc. Natl. Acad. Sci. USA 2011, 108, 20935–20940.  doi: 10.1073/pnas.1019763108

    35. [35]

      Archer, A. J.; Rucklidge, A. M.; Knobloch, E. Quasicrystalline order and a crystalliquid state in a soft-core fluid. Phys. Rev. Lett. 2013, 111, 165501.  doi: 10.1103/PhysRevLett.111.165501

    36. [36]

      Dotera, T.; Oshiro, T.; Ziherl, P. Mosaic two-lengthscale quasicrystals. Nature 2014, 506, 208–211.  doi: 10.1038/nature12938

    37. [37]

      Haji-Akbari, A.; Engel, M.; Keys, A. S.; Zheng, X.; Petschek, R. G.; PalffyMuhoray, P.; Glotzer, S. C. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 2009, 462, 773–U91.

    38. [38]

      Reinhardt, A.; Romano, F.; Doye, J. P. K. Computing phase diagrams for a quasicrystal-forming patchy-particle system. Phys. Rev. Lett. 2013, 110, 255503.  doi: 10.1103/PhysRevLett.110.255503

    39. [39]

      Engel, M.; Damasceno, P. F.; Phillips, C. L.; Glotzer, S. C. Computational selfassembly of a one-component icosahedral quasicrystal. Nat. Mater. 2015, 14, 109–116.  doi: 10.1038/nmat4152

    40. [40]

      Liu, A. J.; Nagel, S. R. Nonlinear dynamics - Jamming is not just cool any more. Nature 1998, 396, 21–22.  doi: 10.1038/23819

    41. [41]

      Liu, A. J.; Nagel, S. R. The jamming transition and the marginally jammed solid. Ann. Rev. of Condens. Matter Phys. 2010, 1, 347–369.  doi: 10.1146/annurev-conmatphys-070909-104045

    42. [42]

      van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys.-Condens. Matter 2010, 22.

    43. [43]

      Torquato, S.; Truskett, T. M.; Debenedetti, P. G. Is random close packing of spheres well defined? Phys. Rev. Lett. 2000, 84, 2064–2067.  doi: 10.1103/PhysRevLett.84.2064

    44. [44]

      Torquato, S.; Stillinger, F. H. Jammed hard-particle packings: From Kepler to Bernal and beyond. Rev. Mod. Phys. 2010, 82, 2633–2672.  doi: 10.1103/RevModPhys.82.2633

    45. [45]

      O'Hern, C. S.; Silbert, L. E.; Liu, A. J.; Nagel, S. R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 2003, 68, 011306.  doi: 10.1103/PhysRevE.68.011306

    46. [46]

      Parisi, G.; Zamponi, F. Mean-field theory of hard sphere glasses and jamming. Rev. Mod. Phys. 2010, 82, 789–845.  doi: 10.1103/RevModPhys.82.789

    47. [47]

      Xu, N. Mechanical, vibrational, and dynamical properties of amorphous systems near jamming. Front. Phys. 2011, 6, 109–123.  doi: 10.1007/s11467-010-0102-y

    48. [48]

      Ikeda, A.; Berthier, L.; Sollich, P. Unified study of glass and jamming rheology in soft particle systems. Phys. Rev. Lett. 2012, 109, 018301.  doi: 10.1103/PhysRevLett.109.018301

    49. [49]

      Urbani, P.; Zamponi, F. Shear yielding and shear jamming of dense hard sphere glasses. Phys. Rev. Lett. 2017, 118, 038001.  doi: 10.1103/PhysRevLett.118.038001

    50. [50]

      Xu, N.; Blawzdziewicz, J.; O'Hern, C. S. Random close packing revisited: Ways to pack frictionless disks. Phys. Rev. E 2005, 71, 061306.  doi: 10.1103/PhysRevE.71.061306

    51. [51]

      Chaudhuri, P.; Berthier, L.; Sastry, S. Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions. Phys. Rev. Lett. 2010, 104, 165701.  doi: 10.1103/PhysRevLett.104.165701

    52. [52]

      Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Glass and jamming transitions: From exact results to finite-dimensional descriptions. Ann. Rev. Condens. Matter Phys. 2017, 8, 265–288.  doi: 10.1146/annurev-conmatphys-031016-025334

    53. [53]

      Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Fractal free energy landscapes in structural glasses. Nat. Commun. 2014, 5, 3725.  doi: 10.1038/ncomms4725

    54. [54]

      Berthier, L.; Coslovich, D.; Ninarello, A.; Ozawa, M. Equilibrium sampling of hard spheres up to the jamming density and beyond. Phys. Rev. Lett. 2016, 116, 238002.  doi: 10.1103/PhysRevLett.116.238002

    55. [55]

      Zhang, Z.; Xu, N.; Chen, D. T. N.; Yunker, P.; Alsayed, A. M.; Aptowicz, K. B.; Habdas, P.; Liu, A. J.; Nagel, S. R.; Yodh, A. G. Thermal vestige of the zero-temperature jamming transition. Nature 2009, 459, 230–233.  doi: 10.1038/nature07998

    56. [56]

      Urich, M.; Denton, A. R. Swelling, structure, and phase stability of compressible microgels. Soft Matter 2016, 12, 9086–9094.  doi: 10.1039/C6SM02056A

    57. [57]

      Miyazaki, R.; Kawasaki, T.; Miyazaki, K. Cluster glass transition of ultrasoft-potential fluids at high density. Phys. Rev. Lett. 2016, 117, 165701.  doi: 10.1103/PhysRevLett.117.165701

    58. [58]

      Xu, N.; Haxton, T. K.; Liu, A. J.; Nagel, S. R. Equivalence of glass transition and colloidal glass transition in the hard-sphere limit. Phys. Rev. Lett. 2009, 103, 245701.  doi: 10.1103/PhysRevLett.103.245701

    59. [59]

      Khrapak, S. A.; Morfill, G. E. Accurate freezing and melting equations for the LennardJones system. J. Chem. Phys. 2011, 134, 094108.  doi: 10.1063/1.3561698

    60. [60]

      Likos, C. N.; Lang, A.; Watzlawek, M.; Lowen, H. Criterion for determining clustering versus reentrant melting behavior for bounded interaction potentials. Phys. Rev. E 2001, 63, 031206.  doi: 10.1103/PhysRevE.63.031206

    61. [61]

      Pamies, J. C.; Cacciuto, A.; Frenkel, D. Phase diagram of Hertzian spheres. J. Chem. Phys. 2009, 131, 044514.  doi: 10.1063/1.3186742

    62. [62]

      Athanasopoulou, L.; Ziherl, P. Phase diagram of elastic spheres. Soft Matter 2017, 13, 1463–1471.  doi: 10.1039/C6SM02474B

    63. [63]

      Allen, M. P.; Tildesley, D. J. Computer simulation of liquids. Oxford Science Publications, New York, 1987.

    64. [64]

      Bitzek, E.; Koskinen, P.; Gahler, F.; Moseler, M.; Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 2006, 97, 170201.  doi: 10.1103/PhysRevLett.97.170201

    65. [65]

      Alexander, S. Amorphous solids: Their structure, lattice dynamics and elasticity. Phys. Rep. 1998, 296, 65–236.  doi: 10.1016/S0370-1573(97)00069-0

    66. [66]

      Wyart, M. On the rigidity of amorphous solids. Ann. Phys. 2005, 30, 1–+.  doi: 10.1051/anphys:2006003

    67. [67]

      Ellenbroek, W. G.; Somfai, E.; van Hecke, M.; van Saarloos, W. Critical scaling in linear response of frictionless granular packings near jamming. Phys. Rev. Lett. 2006, 97, 258001.  doi: 10.1103/PhysRevLett.97.258001

    68. [68]

      Olsson, P.; Teitel, S. Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 2007, 99, 178001.  doi: 10.1103/PhysRevLett.99.178001

    69. [69]

      Wang, L.; Xu, N. Critical scaling in thermal systems near the zero-temperature jamming transition. Soft Matter 2013, 9, 2475–2483.  doi: 10.1039/c2sm27148f

    70. [70]

      Liao, Q.; Xu, N. Criticality of the zero-temperature jamming transition probed by self-propelled particles. Soft Matter 2018, 14, 853–860.  doi: 10.1039/C7SM01909B

    71. [71]

      Liu, H.; Xie, X.; Xu, N. Finite size analysis of zero-temperature jamming transition under applied shear stress by minimizing a thermodynamic-like potential. Phys. Rev. Lett. 2014, 112, 145502.  doi: 10.1103/PhysRevLett.112.145502

    72. [72]

      Drocco, J. A.; Hastings, M. B.; Reichhardt, C. J. O.; Reichhardt, C. Multiscaling at point J: Jamming is a critical phenomenon. Phys. Rev. Lett. 2005, 95.  doi: 10.1103/PhysRevLett.95.088001

    73. [73]

      Keys, A. S.; Abate, A. R.; Glotzer, S. C.; Durian, D. J. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nat. Phys. 2007, 3, 260–264.  doi: 10.1038/nphys572

    74. [74]

      Head, D. A. Critical scaling and aging in cooling systems near the jamming transition. Phys. Rev. Lett. 2009, 102, 138001.  doi: 10.1103/PhysRevLett.102.138001

    75. [75]

      Hatano, T. Scaling properties of granular rheology near the jamming transition. J. Phys. Soc. Japan 2008, 77, 123002.  doi: 10.1143/JPSJ.77.123002

    76. [76]

      Goodrich, C. P.; Liu, A. J.; Nagel, S. R. Finite-size scaling at the jamming transition. Phys. Rev. Lett. 2012, 109, 095704.  doi: 10.1103/PhysRevLett.109.095704

    77. [77]

      Graves, A. L.; Nashed, S.; Padgett, E.; Goodrich, C. P.; Liu, A. J.; Sethna, J. P. Pinning susceptibility: The effect of dilute, quenched disorder on jamming. Phys. Rev. Lett. 2016, 116, 235501.  doi: 10.1103/PhysRevLett.116.235501

    78. [78]

      Xu, N.; Vitelli, V.; Wyart, M.; Liu, A. J.; Nagel, S. R. Energy transport in jammed sphere packings. Phys. Rev. Lett. 2009, 102, 038001.  doi: 10.1103/PhysRevLett.102.038001

    79. [79]

      Silbert, L. E.; Liu, A. J.; Nagel, S. R. Structural signatures of the unjamming transition at zero temperature. Phys. Rev. E 2006, 73, 041304.

    80. [80]

      Plischke, M.; Bergersen, B. Equilibrium statistical physics, World Scientific Publishing Co. Pte. Ltd., 2007.

    81. [81]

      Wang, X.; Zheng, W.; Wang, L.; Xu, N. Disordered solids without well-defined transverse phonons: The nature of hard-sphere glasses. Phys. Rev. Lett. 2015, 114, 035502.  doi: 10.1103/PhysRevLett.114.035502

    82. [82]

      Xu, N.; Vitelli, V.; Liu, A. J.; Nagel, S. R. Anharmonic and quasi-localized vibrations in jammed solids-Modes for mechanical failure. Europhys. Lett. 2010, 90, 56001.  doi: 10.1209/0295-5075/90/56001

    83. [83]

      Phillips, W. A. Amorphous solids. Low temperature properties. Berlin, SpringerVerlag, 1981.

    84. [84]

      Chumakov, A. I.; Sergueev, I.; van Burck, U.; Schirmacher, W.; Asthalter, T.; Ruffer, R.; Leupold, O.; Petry, W. Collective nature of the boson peak and universal transboson dynamics of glasses. Phys. Rev. Lett. 2004, 92, 245508.  doi: 10.1103/PhysRevLett.92.245508

    85. [85]

      Sokolov, A. P.; Buchenau, U.; Steffen, W.; Frick, B.; Wischnewski, A. Comparison of Raman- and neutron-scattering data for glass-forming systems. Phys. Rev. B 1995, 52, R9815–R9818.  doi: 10.1103/PhysRevB.52.R9815

    86. [86]

      Schober, H. R.; Ruocco, G. Size effects and quasilocalized vibrations. Phil. Mag. 2004, 84, 1361–1372.  doi: 10.1080/14786430310001644107

    87. [87]

      Allen, P. B.; Feldman, J. L.; Fabian, J.; Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Phil. Mag. B 1999, 79, 1715–1731.  doi: 10.1080/13642819908223054

    88. [88]

      Widmer-Cooper, A.; Perry, H.; Harrowell, P.; Reichman, D. R. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nat. Phys. 2008, 4, 711–715.  doi: 10.1038/nphys1025

    89. [89]

      Ioffe, A. F.; Regel, A. R. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semiconductors 1960, 4, 237–291.

    90. [90]

      Shintani, H.; Tanaka, H. Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 2008, 7, 870–877.  doi: 10.1038/nmat2293

    91. [91]

      Hansen, J. P.; McDonald, I. R. Theory of simple liquids. Elsevier, Amsterdam, 1986.

    92. [92]

      Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A. Hydrodynamics of soft active matter. Rev. Mod. Phys. 2013, 85, 1143.  doi: 10.1103/RevModPhys.85.1143

    93. [93]

      Bechinger, C.; Di Leonardo, R.; Loewen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006.  doi: 10.1103/RevModPhys.88.045006

    94. [94]

      Briand, G.; Schindler, M.; Dauchot, O. Spontaneously flowing crystal of self-propelled particles. Phys. Rev. Lett. 2018, 120, 208001.  doi: 10.1103/PhysRevLett.120.208001

    95. [95]

      Berthier, L. Nonequilibrium glassy dynamics of self-propelled hard disks. Phys. Rev. Lett. 2014, 112, 220602.  doi: 10.1103/PhysRevLett.112.220602

    96. [96]

      Bialke, J.; Loewen, H.; Speck, T. Microscopic theory for the phase separation of self-propelled repulsive disks. Europhys. Lett. 2013, 103, 30008.  doi: 10.1209/0295-5075/103/30008

    97. [97]

      Bialke, J.; Siebert, J. T.; Loewen, H.; Speck, T. Negative interfacial tension in phaseseparated active brownian particles. Phys. Rev. Lett. 2015, 115, 098301.  doi: 10.1103/PhysRevLett.115.098301

    98. [98]

      Bialke, J.; Speck, T.; Loewen, H. Active colloidal suspensions: Clustering and phase behavior. J. Non-Cryst. Solids 2015, 407, 367–375.  doi: 10.1016/j.jnoncrysol.2014.08.011

    99. [99]

      Buttinoni, I.; Bialke, J.; Kuemmel, F.; Loewen, H.; Bechinger, C.; Speck, T. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 2013, 110, 238301.  doi: 10.1103/PhysRevLett.110.238301

    100. [100]

      Fily, Y.; Henkes, S.; Marchetti, M. C. Freezing and phase separation of self-propelled disks. Soft Matter 2014, 10, 2132–2140.  doi: 10.1039/C3SM52469H

    101. [101]

      Fily, Y.; Marchetti, M. C. Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 2012, 108, 235702.  doi: 10.1103/PhysRevLett.108.235702

    102. [102]

      Henkes, S.; Fily, Y.; Marchetti, M. C. Active jamming: Self-propelled soft particles at high density. Phys. Rev. E 2011, 84, 040301.  doi: 10.1103/PhysRevE.84.040301

    103. [103]

      Marchetti, M. C.; Fily, Y.; Henkes, S.; Patch, A.; Yllanes, D. Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter. Curr. opinion in colloid & interf. Sci. 2016, 21, 34–43.

    104. [104]

      Mognetti, B. M.; Saric, A.; Angioletti-Uberti, S.; Cacciuto, A.; Valeriani, C.; Frenkel, D. Living clusters and crystals from low-density suspensions of active colloids. Phys. Rev. Lett. 2013, 111, 245702.  doi: 10.1103/PhysRevLett.111.245702

    105. [105]

      Ni, R.; Stuart, M. A. C.; Dijkstra, M. Pushing the glass transition towards random close packing using self-propelled hard spheres. Nat. Commun. 2013, 4, 2704.  doi: 10.1038/ncomms3704

    106. [106]

      Palacci, J.; Sacanna, S.; Steinberg, A. P.; Pine, D. J.; Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 2013, 339, 936–940.  doi: 10.1126/science.1230020

    107. [107]

      Redner, G. S.; Hagan, M. F.; Baskaran, A. Structure and dynamics of a phaseseparating active colloidal fluid. Phys. Rev. Lett. 2013, 110, 055701.  doi: 10.1103/PhysRevLett.110.055701

    108. [108]

      Reichhardt, C.; Reichhardt, C. J. O. Active matter transport and jamming on disordered landscapes. Phys. Rev. E 2014, 90, 012701.

    109. [109]

      Reichhardt, C.; Reichhardt, C. J. O. Absorbing phase transitions and dynamic freezing in running active matter systems. Soft Matter 2014, 10, 7502–7510.  doi: 10.1039/C4SM01273A

    110. [110]

      Theurkauff, I.; Cottin-Bizonne, C.; Palacci, J.; Ybert, C.; Bocquet, L. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 2012, 108, 268303.  doi: 10.1103/PhysRevLett.108.268303

    111. [111]

      Yang, X.; Manning, M. L.; Marchetti, M. C. Aggregation and segregation of confined active particles. Soft Matter 2014, 10, 6477–6484.  doi: 10.1039/C4SM00927D

    112. [112]

      Yan, J.; Han, M.; Zhang, J.; Xu, C.; Luijten, E.; Granick, S. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 2016, 15, 1095–+.  doi: 10.1038/nmat4696

    113. [113]

      Tong, H.; Tan, P.; Xu, N. From crystals to disordered crystals: A hidden order-disorder transition. Sci. Rep. 2015, 5, 15378.  doi: 10.1038/srep15378

    114. [114]

      Mizuno, H.; Mossa, S.; Barrat, J.-L. Elastic heterogeneity, vibrational states, and thermal conductivity across an amorphisation transition. Europhys. Lett. 2013, 104, 56001.  doi: 10.1209/0295-5075/104/56001

    115. [115]

      Goodrich, C. P.; Liu, A. J.; Nagel, S. R. Solids between the mechanical extremes of order and disorder. Nat. Phys. 2014, 10, 578–581.  doi: 10.1038/nphys3006

    116. [116]

      Zhao, C.; Tian, K.; Xu, N. New jamming scenario: From marginal jamming to deep jamming. Phys. Rev. Lett. 2011, 106, 125503.  doi: 10.1103/PhysRevLett.106.125503

    117. [117]

      Wang, L.; Xu, N. Probing the glass transition from structural and vibrational properties of zero-temperature glasses. Phys. Rev. Lett. 2014, 112, 055701.  doi: 10.1103/PhysRevLett.112.055701

    118. [118]

      Singh, S.; Ediger, M. D.; de Pablo, J. J. Ultrastable glasses from in silico vapour deposition. Nat. Mater. 2013, 12, 139–144.  doi: 10.1038/nmat3521

    119. [119]

      Wang, L.; Duan, Y.; Xu, N. Non-monotonic pressure dependence of the dynamics of soft glass-formers at high compressions. Soft Matter 2012, 8, 11831–11838.  doi: 10.1039/c2sm26510a

    120. [120]

      Lee, S. I.; Lee, S. J. Effect of the range of the potential on two-dimensional melting. Phys. Rev. E 2008, 78, 041504.  doi: 10.1103/PhysRevE.78.041504

    121. [121]

      Bolhuis, P.; Hagen, M.; Frenkel, D. Isostructural solid-solid transition in crystalline systems with short-ranged interaction. Phys. Rev. E 1994, 50, 4880–4890.  doi: 10.1103/PhysRevE.50.4880

    122. [122]

      Zu, M.; Tan, P.; Xu, N. Forming quasicrystals by monodisperse soft core particles. Nat. Commun. 2017, 8, 2089.  doi: 10.1038/s41467-017-02316-3

    123. [123]

      Dzugutov, M. Phason dynamics and atomic transport in an equilibrium dodecagonal quasi-crystal. Europhys. Lett. 1995, 31, 95–100.  doi: 10.1209/0295-5075/31/2/006

    124. [124]

      Kalugin, P. A.; Katz, A. A mechanism for self-diffusion in quasi-crystals. Europhys. Lett. 1993, 21, 921–926.  doi: 10.1209/0295-5075/21/9/008

    125. [125]

      Roth, J.; Gahler, F. Atomic self-diffusion in dodecagonal quasicrystals. Euro. Phys. J. B 1998, 6, 425–445.  doi: 10.1007/s100510050570

    126. [126]

      Watzlawek, M.; Likos, C. N.; Lowen, H. Phase diagram of star polymer solutions. Phys. Rev. Lett. 1999, 82, 5289–5292.  doi: 10.1103/PhysRevLett.82.5289

    127. [127]

      Osterman, N.; Babic, D.; Poberaj, I.; Dobnikar, J.; Ziherl, P. Observation of condensed phases of quasiplanar core-softened colloids. Phys. Rev. Lett. 2007, 99, 248301.  doi: 10.1103/PhysRevLett.99.248301

    128. [128]

      Peng, Y.; Wang, F.; Wang, Z.; Alsayed, A. M.; Zhang, Z.; Yodh, A. G.; Han, Y. Two-step nucleation mechanism in solid-solid phase transitions. Nat. Mater. 2015, 14, 101–108.  doi: 10.1038/nmat4083

    129. [129]

      Zaccarelli, E. Colloidal gels: equilibrium and non-equilibrium routes. J. Phys.-Condens. Matter 2007, 19, 323101.  doi: 10.1088/0953-8984/19/32/323101

    130. [130]

      Koeze, D. J.; Tighe, B. P. Sticky matters: Jamming and rigid cluster statistics with attractive particle interactions. Phys. Rev. Lett. 2018, 121, 188002.  doi: 10.1103/PhysRevLett.121.188002

    131. [131]

      Lois, G.; Blawzdziewicz, J.; O'Hern, C. S. Jamming transition and new percolation universality classes in particulate systems with attraction. Phys. Rev. Lett. 2008, 100, 028001.  doi: 10.1103/PhysRevLett.100.028001

    132. [132]

      Zheng, W.; Liu, H.; Xu, N. Shear-induced solidification of athermal systems with weak attraction. Phys. Rev. E 2016, 94, 062608.  doi: 10.1103/PhysRevE.94.062608

  • 加载中
    1. [1]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    2. [2]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    3. [3]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    4. [4]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    8. [8]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    9. [9]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    10. [10]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    11. [11]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    12. [12]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    13. [13]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    14. [14]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    15. [15]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    16. [16]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    17. [17]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    18. [18]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    19. [19]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    20. [20]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

Metrics
  • PDF Downloads(0)
  • Abstract views(771)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return