Citation: Shou-Kuo Man, Xiao Wang, Jin-Wen Zheng, Ze-Sheng An. Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 9-16. doi: 10.1007/s10118-019-2303-3 shu

Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly

  • Polymerization-induced self-assembly (PISA) is an efficient and versatile method to afford polymeric nano-objects with polymorphic morphologies. Compared to dispersion PISA syntheses based on soluble monomers, the vast majority of emulsion PISA formulations using insoluble monomers leads to kinetically-trapped spheres. Herein, we present aqueous emulsion PISA formulations generating worms and vesicles besides spheres. Two monomers with different butyl groups, n-butyl (nBHMA) and tert-butyl (tBHMA) α-hydroxymethyl acrylate, and thus possessing different water solubilities were synthesized via Baylis-Hillman reaction. Photoinitiated aqueous emulsion polymerizations of nBHMA and tBHMA employing poly(ethylene glycol) macromolecular chain transfer agents (macro-CTAs, PEG45-CTA, and PEG113-CTA) at 40 °C were systematically investigated to evaluate the effect of monomer structure and solubility on the morphology of the generated block copolymer nano-objects. Higher order morphologies including worms and vesicles were readily accessed for tBHMA, which has a higher water solubility than that of nBHMA. This study proves that plasticization of the core-forming block by water plays a key role in enhancing chain mobility required for morphological transition in emulsion PISA.
  • 加载中
    1. [1]

      Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Formation of hexagonally packed hollow hoops and morphology transition in RAFT ethanol dispersion polymerization. Macromol. Rapid Commun. 2015, 36, 1428−1436.  doi: 10.1002/marc.v36.15

    2. [2]

      Gao, P.; Cao, H.; Ding, Y.; Cai, M.; Cui, Z.; Lu, X.; Cai, Y. Synthesis of hydrogen-bonded pore-switchable cylindrical vesicles via visible-light-mediated RAFT room-temperature aqueous dispersion polymerization. ACS Macro Lett. 2016, 5, 1327−1331.  doi: 10.1021/acsmacrolett.6b00796

    3. [3]

      Li, Y.; Armes, S. P. RAFT synthesis of sterically stabilized methacrylic nanolatexes and vesicles by aqueous dispersion polymerization. Angew. Chem. Int. Ed. 2010, 49, 4042−6.  doi: 10.1002/anie.201001461

    4. [4]

      Zhou, W.; Qu, Q.; Xu, Y.; An, Z. Aqueous polymerization-induced self-assembly for the synthesis of ketone-functionalized nano-objects with low polydispersity. ACS Macro Lett. 2015, 4, 495−499.  doi: 10.1021/acsmacrolett.5b00225

    5. [5]

      Canning, S. L.; Smith, G. N.; Armes, S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 2016, 49, 1985−2001.  doi: 10.1021/acs.macromol.5b02602

    6. [6]

      Warren, N. J.; Armes, S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 2014, 136, 10174−10185.  doi: 10.1021/ja502843f

    7. [7]

      Huo, M.; Zhang, Y.; Zeng, M.; Liu, L.; Wei, Y.; Yuan, J. Morphology evolution of polymeric assemblies regulated with fluoro-containing mesogen in polymerization-induced self-assembly. Macromolecules 2017, 50, 8192−8201.  doi: 10.1021/acs.macromol.7b01437

    8. [8]

      Guan, S.; Zhang, C.; Wen, W.; Qu, T.; Zheng, X.; Zhao, Y.; Chen, A. Formation of anisotropic liquid crystalline nanoparticles via polymerization-induced hierarchical self-assembly. ACS Macro Lett. 2018, 7, 358−363.  doi: 10.1021/acsmacrolett.8b00082

    9. [9]

      Wang, X.; Shen, L.; An, Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog. Polym. Sci. 2018, 83, 1−27.  doi: 10.1016/j.progpolymsci.2018.05.003

    10. [10]

      Wang, X.; An, Z. New insights into RAFT dispersion polymerization-induced self-assembly: from monomer library, morphological control, and stability to driving forces. Macromol. Rapid Commun. 2019, 40, 1800325.  doi: 10.1002/marc.v40.2

    11. [11]

      Derry, M. J.; Fielding, L. A.; Armes, S. P. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog. Polym. Sci. 2016, 52, 1−18.  doi: 10.1016/j.progpolymsci.2015.10.002

    12. [12]

      Shi, P.; Zhou, H.; Gao, C.; Wang, S.; Sun, P.; Zhang, W. Macro-RAFT agent mediated dispersion copolymerization: a small amount of solvophilic co-monomer leads to a great change. Polym. Chem. 2015, 6, 4911−4920.  doi: 10.1039/C5PY00697J

    13. [13]

      Figg, C. A.; Simula, A.; Gebre, K. A.; Tucker, B. S.; Haddleton, D. M.; Sumerlin, B. S. Polymerization-induced thermal self-assembly (PITSA). Chem. Sci. 2015, 6, 1230−1236.  doi: 10.1039/C4SC03334E

    14. [14]

      Sugihara, S.; Ma'Radzi, A. H.; Ida, S.; Irie, S.; Kikukawa, T.; Maeda, Y. In situ nano-objects via RAFT aqueous dispersion polymerization of 2-methoxyethyl acrylate using poly(ethylene oxide) macromolecular chain transfer agent as steric stabilizer. Polymer 2015, 76, 17−24.  doi: 10.1016/j.polymer.2015.08.051

    15. [15]

      Chen, S. L.; Shi, P. F.; Zhang, W. Q. In situ synthesis of block copolymer nano-assemblies by polymerization-induced self-assembly under heterogeneous condition. Chinese J. Polym. Sci. 2017, 35, 455−455.  doi: 10.1007/s10118-017-1907-8

    16. [16]

      Wan, W. M.; Hong, C. Y.; Pan, C. Y. One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chem. Commun. 2009, 5883.

    17. [17]

      Wan, W. M.; Pan, C. Y. One-pot synthesis of polymeric nanomaterials via RAFT dispersion polymerization induced self-assembly and re-organization. Polym. Chem. 2010, 1, 1475−1484.  doi: 10.1039/c0py00124d

    18. [18]

      Tritschler, U.; Pearce, S.; Gwyther, J.; Whittell, G. R.; Manners, I. 50th Anniversary perspective: functional nanoparticles from the solution self-assembly of block copolymers. Macromolecules 2017, 50, 3439−3463.  doi: 10.1021/acs.macromol.6b02767

    19. [19]

      Zhang, W.; D’Agosto, F.; Boyron, O.; Rieger, J.; Charleux, B. Toward a better understanding of the parameters that lead to the formation of nonspherical polystyrene particles via RAFT-mediated one-pot aqueous emulsion polymerization. Macromolecules 2012, 45, 4075−4084.  doi: 10.1021/ma300596f

    20. [20]

      Zhang, B.; Lv, X.; An, Z. Modular monomers with tunable solubility: synthesis of highly incompatible block copolymer nano-objects via RAFT aqueous dispersion polymerization. ACS Macro Lett. 2017, 6, 224−228.  doi: 10.1021/acsmacrolett.7b00056

    21. [21]

      Wang, X.; Man, S.; Zheng, J.; An, Z. Alkyl α-hydroxymethyl acrylate monomers for aqueous dispersion polymerization-induced self-assembly. ACS Macro Lett. 2018, 7, 1461−1467.  doi: 10.1021/acsmacrolett.8b00839

    22. [22]

      Yu, Q.; Ding, Y.; Cao, H.; Lu, X.; Cai, Y. Use of polyion complexation for polymerization-induced self-assembly in water under visible light irradiation at 25 °C. ACS Macro Lett. 2015, 4, 1293−1296.  doi: 10.1021/acsmacrolett.5b00699

    23. [23]

      Ding, Y.; Cai, M.; Cui, Z.; Huang, L.; Wang, L.; Lu, X.; Cai, Y. Synthesis of low-dimensional polyion complex nanomaterials via polymerization-induced electrostatic self-assembly. Angew. Chem. Int. Ed. 2018, 57, 1053−1056.  doi: 10.1002/anie.201710811

    24. [24]

      Cai, M.; Ding, Y.; Wang, L.; Huang, L.; Lu, X.; Cai, Y. Synthesis of one-component nanostructured polyion complexes via polymerization-induced electrostatic self-assembly. ACS Macro Lett. 2018, 7, 208−212.  doi: 10.1021/acsmacrolett.8b00005

    25. [25]

      Chen, X.; Liu, L.; Huo, M.; Zeng, M.; Peng, L.; Feng, A.; Wang, X.; Yuan, J. Direct synthesis of polymer nanotubes by aqueous dispersion polymerization of a cyclodextrin/styrene complex. Angew. Chem. Int. Ed. 2017, 56, 16541−16545.  doi: 10.1002/anie.201709129

    26. [26]

      Blanazs, A.; Madsen, J.; Battaglia, G.; Ryan, A. J.; Armes, S. P. Mechanistic insights for block copolymer morphologies: how do worms form vesicles? J. Am. Chem. Soc. 2011, 133, 16581−7.  doi: 10.1021/ja206301a

    27. [27]

      Shen, L.; Guo, H.; Zheng, J.; Wang, X.; Yang, Y.; An, Z. RAFT Polymerization-induced self-assembly as a strategy for versatile synthesis of semifluorinated liquid-crystalline block copolymer nanoobjects. ACS Macro Lett. 2018, 7, 287−292.  doi: 10.1021/acsmacrolett.8b00070

    28. [28]

      Chambon, P.; Blanazs, A.; Battaglia, G.; Armes, S. P. Facile synthesis of methacrylic ABC triblock copolymer vesicles by RAFT aqueous dispersion polymerization. Macromolecules 2012, 45, 5081−5090.  doi: 10.1021/ma300816m

    29. [29]

      Huo, M.; Zeng, M.; Li, D.; Liu, L.; Wei, Y.; Yuan, J. Tailoring the multicompartment nanostructures of fluoro-containing ABC triblock terpolymer assemblies via polymerization-induced self-assembly. Macromolecules 2017, 50, 8212−8220.  doi: 10.1021/acs.macromol.7b01629

    30. [30]

      Gao, C.; Wu, J.; Zhou, H.; Qu, Y.; Li, B.; Zhang, W. Self-assembled blends of AB/BAB block copolymers prepared through dispersion RAFT polymerization. Macromolecules 2016, 49, 4490−4500.  doi: 10.1021/acs.macromol.6b00771

    31. [31]

      Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Fabrication of spaced concentric vesicles and polymerizations in RAFT dispersion polymerization. Macromolecules 2014, 47, 1664−1671.  doi: 10.1021/ma402497y

    32. [32]

      Gao, C.; Zhou, H.; Qu, Y.; Wang, W.; Khan, H.; Zhang, W. In situ synthesis of block copolymer nanoassemblies via polymerization-induced self-assembly in poly(ethylene glycol). Macromolecules 2016, 49, 3789−3798.  doi: 10.1021/acs.macromol.6b00688

    33. [33]

      Lowe, A. B. RAFT alcoholic dispersion polymerization with polymerization-induced self-assembly. Polymer 2016, 106, 161−181.  doi: 10.1016/j.polymer.2016.08.082

    34. [34]

      Huo, M.; Li, D.; Song, G.; Zhang, J.; Wu, D.; Wei, Y.; Yuan, J. Semi-fluorinated methacrylates: a class of versatile monomers for polymerization-induced self-assembly. Macromol. Rapid Commun. 2018, 39, 1700840.  doi: 10.1002/marc.v39.7

    35. [35]

      Semsarilar, M.; Penfold, N.; Jones, E. R.; Armes, S. P. Semi-crystalline diblock copolymer nano-objects prepared via RAFT alcoholic dispersion polymerization of stearyl methacrylate. Polym. Chem. 2015, 6, 1751−1757.  doi: 10.1039/C4PY01664E

    36. [36]

      Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat. Chem. 2017, 9, 785−792.  doi: 10.1038/nchem.2721

    37. [37]

      Zeng, M.; Huo, M.; Feng, Y.; Yuan, J. CO2-breathing polymer assemblies via one-pot sequential RAFT dispersion polymerization. Macromol. Rapid Commun. 2018, 39, 1800291.  doi: 10.1002/marc.v39.15

    38. [38]

      Blanazs, A.; Verber, R.; Mykhaylyk, O. O.; Ryan, A. J.; Heath, J. Z.; Douglas, C. W. I.; Armes, S. P. Sterilizable gels from thermoresponsive block copolymer worms. J. Am. Chem. Soc. 2012, 134, 9741−9748.  doi: 10.1021/ja3024059

    39. [39]

      Yao, H.; Ning, Y.; Jesson, C. P.; He, J.; Deng, R.; Tian, W.; Armes, S. P. Using host-guest chemistry to tune the kinetics of morphological transitions undertaken by block copolymer vesicles. ACS Macro Lett. 2017, 6, 1379−1385.  doi: 10.1021/acsmacrolett.7b00836

    40. [40]

      Deng, R.; Derry, M. J.; Mable, C. J.; Ning, Y.; Armes, S. P. Using dynamic covalent chemistry to drive morphological transitions: controlled release of encapsulated nanoparticles from block copolymer vesicles. J. Am. Chem. Soc. 2017, 139, 7616−7623.  doi: 10.1021/jacs.7b02642

    41. [41]

      Canning, S. L.; Neal, T. J.; Armes, S. P. pH-responsive schizophrenic diblock copolymers prepared by polymerization-induced self-assembly. Macromolecules 2017, 50, 6108−6116.  doi: 10.1021/acs.macromol.7b01005

    42. [42]

      Penfold, N. J. W.; Lovett, J. R.; Warren, N. J.; Verstraete, P.; Smets, J.; Armes, S. P. pH-Responsive non-ionic diblock copolymers: protonation of a morpholine end-group induces an order-order transition. Polym. Chem. 2016, 7, 79−88.  doi: 10.1039/C5PY01510C

    43. [43]

      Wang, X.; Zhou, J.; Lv, X.; Zhang, B.; An, Z. Temperature-induced morphological transitions of poly(dimethylacrylamide)-poly(diacetone acrylamide) block copolymer lamellae synthesized via aqueous polymerization-induced self-assembly. Macromolecules 2017, 50, 7222−7232.  doi: 10.1021/acs.macromol.7b01644

    44. [44]

      Tan, J.; Zhang, X.; Liu, D.; Bai, Y.; Huang, C.; Li, X.; Zhang, L. Facile preparation of CO2-responsive polymer nano-objects via aqueous photoinitiated polymerization-induced self-assembly (photo-PISA). Macromol. Rapid Commun. 2017, 38, 1600508.  doi: 10.1002/marc.v38.13

    45. [45]

      Zhang, B.; Lv, X.; Zhu, A.; Zheng, J.; Yang, Y.; An, Z. Morphological stabilization of block copolymer worms using asymmetric cross-linkers during polymerization-induced self-assembly. Macromolecules 2018, 51, 2776−2784.  doi: 10.1021/acs.macromol.8b00246

    46. [46]

      Lv, F.; An, Z.; Wu, P. Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases. Nat. Commun. 2019, 10, 1397.  doi: 10.1038/s41467-019-09324-5

    47. [47]

      Truong, N. P.; Dussert, M. V.; Whittaker, M. R.; Quinn, J. F.; Davis, T. P. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polym. Chem. 2015, 6, 3865−3874.  doi: 10.1039/C5PY00166H

    48. [48]

      Perrier, S. 50th Anniversary perspective: RAFT polymerization—a user guide. Macromolecules 2017, 50, 7433−7447.  doi: 10.1021/acs.macromol.7b00767

    49. [49]

      Cunningham, V. J.; Alswieleh, A. M.; Thompson, K. L.; Williams, M.; Leggett, G. J.; Armes, S. P.; Musa, O. M. Poly(glycerol monomethacrylate)-poly(benzyl methacrylate) diblock copolymer nanoparticles via RAFT emulsion polymerization: synthesis, characterization, and interfacial activity. Macromolecules 2014, 47, 5613−5623.  doi: 10.1021/ma501140h

    50. [50]

      Rieger, J.; Zhang, W.; Stoffelbach, F.; Charleux, B. Surfactant-free RAFT emulsion polymerization using poly(N,N-dimethylacrylamide) trithiocarbonate macromolecular chain transfer agents. Macromolecules 2010, 43, 6302−6310.  doi: 10.1021/ma1009269

    51. [51]

      Chaduc, I.; Girod, M.; Antoine, R.; Charleux, B.; D'Agosto, F.; Lansalot, M. Batch emulsion polymerization mediated by poly(methacrylic acid) macro-RAFT agents: one-pot synthesis of self-stabilized particles. Macromolecules 2012, 45, 5881−5893.  doi: 10.1021/ma300875y

    52. [52]

      Chaduc, I.; Crepet, A.; Boyron, O.; Charleux, B.; D'Agosto, F.; Lansalot, M. Effect of the pH on the RAFT polymerization of acrylic acid in water. Application to the synthesis of poly(acrylic acid)-stabilized polystyrene particles by RAFT emulsion polymerization. Macromolecules 2013, 46, 6013−6023.

    53. [53]

      Song, Y. K.; Truong, N. P.; Quinn, J. F.; Whittaker, M. R.; Davis, T. P. Polymerization-induced self-assembly: the effect of end group and initiator concentration on morphology of nanoparticles prepared via RAFT aqueous emulsion polymerization. ACS Macro Lett. 2017, 6, 1013−1019.  doi: 10.1021/acsmacrolett.7b00583

    54. [54]

      Lesage de la Haye, J.; Zhang, X.; Chaduc, I.; Brunel, F.; Lansalot, M.; D'Agosto, F. The effect of hydrophile topology in RAFT-mediated polymerization-induced self-assembly. Angew. Chem. Int. Ed. 2016, 55, 3739−3743.  doi: 10.1002/anie.201511159

    55. [55]

      Boissé, S.; Rieger, J.; Belal, K.; Di-Cicco, A.; Beaunier, P.; Li, M. H.; Charleux, B. Amphiphilic block copolymer nano-fibers via RAFT-mediated polymerization in aqueous dispersed system. Chem. Commun. 2010, 46, 1950−1952.  doi: 10.1039/b923667h

    56. [56]

      Cockram, A. A.; Neal, T. J.; Derry, M. J.; Mykhaylyk, O. O.; Williams, N. S.; Murray, M. W.; Emmett, S. N.; Armes, S. P. Effect of monomer solubility on the evolution of copolymer morphology during polymerization-induced self-assembly in aqueous solution. Macromolecules 2017, 50, 796−802.  doi: 10.1021/acs.macromol.6b02309

    57. [57]

      Tan, J.; Dai, X.; Zhang, Y.; Yu, L.; Sun, H.; Zhang, L. Photoinitiated polymerization-induced self-assembly via visible light-induced RAFT-mediated emulsion polymerization. ACS Macro Lett. 2019, 8, 205−212.  doi: 10.1021/acsmacrolett.9b00007

    58. [58]

      Peng, C.; Joy, A. Baylis-Hillman reaction as a versatile platform for the synthesis of diverse functionalized polymers by chain and step polymerization. Macromolecules 2014, 47, 1258−1268.  doi: 10.1021/ma4025416

    59. [59]

      Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Recent advances in the Baylis-Hillman reaction and applications. Chem. Rev. 2003, 103, 811−892.  doi: 10.1021/cr010043d

    60. [60]

      Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. Tetrahedron Lett. 1999, 40, 2435−2438.  doi: 10.1016/S0040-4039(99)00177-X

    61. [61]

      Wang, X.; Figg, C. A.; Lv, X.; Yang, Y.; Sumerlin, B. S.; An, Z. Star architecture promoting morphological transitions during polymerization-induced self-assembly. ACS Macro Lett. 2017, 6, 337−342.  doi: 10.1021/acsmacrolett.7b00099

    62. [62]

      Warren, N. J.; Mykhaylyk, O. O.; Mahmood, D.; Ryan, A. J.; Armes, S. P. RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies. J. Am. Chem. Soc. 2014, 136, 1023−1033.  doi: 10.1021/ja410593n

    63. [63]

      Dormidontova, E. E. Role of competitive PEO-water and water-water hydrogen bonding in aqueous solution PEO behavior. Macromolecules 2002, 35, 987−1001.  doi: 10.1021/ma010804e

    64. [64]

      Yeow, J.; Boyer, C. Photoinitiated polymerization-induced self-assembly (photo-PISA): new insights and opportunities. Adv. Sci. 2017, 4, 1700137.  doi: 10.1002/advs.v4.7

  • 加载中
    1. [1]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    2. [2]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    3. [3]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    4. [4]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    7. [7]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    8. [8]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    9. [9]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    10. [10]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    11. [11]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    12. [12]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    13. [13]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    14. [14]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    15. [15]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    16. [16]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    17. [17]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    18. [18]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    19. [19]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    20. [20]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

Metrics
  • PDF Downloads(0)
  • Abstract views(767)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return