Citation: Zheng-Zheng Wang, Hui-Qi Zhang. Synthesis of an Azobenzene-containing Main-chain Crystalline Polymer and Photodeformation Behaviors of Its Supramolecular Hydrogen-bonded Fibers[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 37-44. doi: 10.1007/s10118-019-2302-4 shu

Synthesis of an Azobenzene-containing Main-chain Crystalline Polymer and Photodeformation Behaviors of Its Supramolecular Hydrogen-bonded Fibers

  • Corresponding author: Hui-Qi Zhang, zhanghuiqi@nankai.edu.cn
  • Received Date: 29 March 2019
    Revised Date: 23 May 2019
    Available Online: 30 August 2019

  • The synthesis of a new azobenzene (azo)-containing main-chain crystalline polymer with reactive secondary amino groups in its backbone and photodeformation behaviors of its supramolecular hydrogen-bonded fibers are described. This main-chain azo polymer (namely Azo-MP6) was prepared via first the synthesis of a diacrylate-type azo monomer and its subsequent Michael addition copolymerization with trans-1,4-cyclohexanediamine under a mild reaction condition. Azo-MP6 was found to have a linear main-chain chemical structure instead of a branched one, as verified by comparing its 1H-NMR spectrum with that of the azo polymer prepared via the polymer analogous reaction of Azo-MP6 with acetic anhydride. The thermal stability, phase transition behavior, and photoresponsivity of Azo-MP6 were characterized with TGA, DSC, POM, XRD, and UV-Vis spectroscopy. The experimental results revealed that it had good thermal stability, low glass transition temperature, broad crystalline phase temperature range, and highly reversible photoresponsivity. Physically crosslinked supramolecular hydrogen-bonded fibers with good mechanical properties and a high alignment order of azo mesogens were readily fabricated from Azo-MP6 by using the simple melt spinning method, and they could show " reversible” photoinduced bending under the same UV light irradiation and good anti-fatigue properties.
  • 加载中
    1. [1]

      Yu, Y.; Ikeda, T. Soft actuators based on liquid-crystalline elastomers. Angew. Chem. Int. Ed. 2006, 45, 5416−5418.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 2010, 22, 3366−3387.  doi: 10.1002/adma.200904059

    3. [3]

      Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149−2180.  doi: 10.1002/adma.v23.19

    4. [4]

      Ikeda, T.; Ube, T. Photomobile polymer materials: from nano to macro. Mater. Today 2011, 14, 480−487.  doi: 10.1016/S1369-7021(11)70212-7

    5. [5]

      Ube, T.; Ikeda, T. Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions. Angew. Chem. Int. Ed. 2014, 53, 10290−10299.  doi: 10.1002/anie.201400513

    6. [6]

      White, T. J.; Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087−1098.  doi: 10.1038/nmat4433

    7. [7]

      Oscurato, S. L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics 2018, 7, 1387−1422.  doi: 10.1515/nanoph-2018-0040

    8. [8]

      Fang, L.; Zhang, H. T.; Li, Z.; Zhang, Y.; Zhang, Y. Y.; Zhang, H. Synthesis of reactive azobenzene main-chain liquid crystalline polymers via Michael addition polymerization and photomechanical effects of their supramolecular hydrogen-bonded fibers. Macromolecules 2013, 46, 7650−7660.  doi: 10.1021/ma401655k

    9. [9]

      Nie, J.; Liu, X.; Yan, Y.; Zhang, H. Supramolecular hydrogen-bonded photodriven actuators based on an azobenzene-containing main-chain liquid crystalline poly(ester-amide). J. Mater. Chem. C 2017, 5, 10391−10398.  doi: 10.1039/C7TC02943H

    10. [10]

      He, L. H.; Wang, G. M.; Tang, Q.; Fu, X. K.; Gong, C. B. Synthesis and characterization of novel electrochromic and photoresponsive materials based on azobenzene-4,4′-dicarboxylic acid dialkyl ester. J. Mater. Chem. C 2014, 2, 8162−8169.  doi: 10.1039/C4TC01205D

    11. [11]

      Alconcel, S. N.; Kim, S. H.; Tao, L.; Maynard, H. D. Synthesis of biotinylated aldehyde polymers for biomolecule conjugation. Macromol. Rapid Commun. 2013, 34, 983−989.  doi: 10.1002/marc.v34.12

    12. [12]

      Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 2006, 314, 87−531.  doi: 10.1016/j.progpolymsci.2006.03.001

    13. [13]

      Zhou, Q. F.; Wang, X. J. " Liquid crystalline polymers” (in Chinese). Science Press, Beijing, China, 1994.

    14. [14]

      Niemann, M.; Ritter, H. Comb-like methacrylamide polymers containing condensates of amino acids and azobenzene moieties in the side chains. Makromol. Chem. 1993, 194, 1169−1181.  doi: 10.1002/macp.1993.021940412

    15. [15]

      Wang, G.; Tong, X.; Zhao, Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 2004, 37, 8911−8917.  doi: 10.1021/ma048416a

    16. [16]

      Akiyama, H.; Tamaoki, N. Synthesis and photoinduced phase transitions of poly(N-isopropylacrylamide) derivative functionalized with terminal azobenzene units. Macromolecules 2007, 40, 5129−5132.  doi: 10.1021/ma070628v

    17. [17]

      Naciri, J.; Srinivasan, A.; Jeon, H.; Nikolov, N.; Keller, P.; Ratna, B. R. Nematic elastomer fiber actuator. Macromolecules 2003, 36, 8499−8505.  doi: 10.1021/ma034921g

    18. [18]

      Yoshino, T.; Kondo, M.; Mamiya, J.; Kinoshita, M.; Yu, Y.; Ikeda, T. Three-dimensional photomobility of crosslinked azobenzene liquid crystalline polymer fibers. Adv. Mater. 2010, 22, 1361−1363.  doi: 10.1002/adma.200902879

    19. [19]

      Lv, J.; Wang, W.; Wu, W.; Yu, Y. A reactive azobenzene liquid-crystalline block copolymer as a promising material for practical application of light-driven soft actuators. J. Mater. Chem. C 2015, 3, 6621−6626.  doi: 10.1039/C5TC00595G

    20. [20]

      Ozawa, T.; Kondo, M.; Mamiya, J. I.; Ikeda, T. Enhancement of mechanical stability in hydrogen-bonded photomobile materials with chemically modified single-walled carbon nanotubes. J. Mater. Chem. C 2014, 2, 2313−2315.  doi: 10.1039/c3tc32585g

    21. [21]

      Sun, X.; Wang, W.; Qiu, L.; Guo, W.; Yu, Y.; Peng, H. Unusual reversible photomechanical actuation in polymer/nanotube composites. Angew. Chem. Int. Ed. 2012, 51, 8520−8524.  doi: 10.1002/anie.201201975

    22. [22]

      Li, X.; Ma, S.; Hu, J.; Ni, Y.; Lin, Z.; Yu, H. Photo-activated bimorph composites of Kapton and liquid-crystalline polymer towards biomimetic circadian rhythms of Albizia julibrissin leaves. J. Mater. Chem. C 2019, 7, 622−629.  doi: 10.1039/C8TC05186K

    23. [23]

      Wang, W.; Sun, X.; Wu, W.; Peng, H.; Yu, Y. Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. Angew. Chem. Int. Ed. 2012, 51, 4644−4647.  doi: 10.1002/anie.201200723

    24. [24]

      Cheng, Z.; Ma, S.; Zhang, Y.; Huang, S.; Chen, Y.; Yu, H. Photomechanical motion of liquid-crystalline fibers bending away from a light source. Macromolecules 2017, 50, 8317−8324.  doi: 10.1021/acs.macromol.7b01741

    25. [25]

      Lee, K. M.; Wang, D. H.; Koerner, H.; Vaia, R. A.; Tan, L. S.; White, T. J. Enhancement of photogenerated mechanical force in azobenzene-functionalized polyimides. Angew. Chem. Int. Ed. 2012, 51, 4117−4121.  doi: 10.1002/anie.201200726

    26. [26]

      Hao, Y.; Huang, S.; Guo, Y.; Zhou, L.; Hao, H.; Barrett, C. J.; Yu, H. Photoinduced multi-directional deformation of azobenzene molecular crystals. J. Mater. Chem. C 2019, 7, 503−508.  doi: 10.1039/c8tc04631j

  • 加载中
    1. [1]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    2. [2]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    3. [3]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    4. [4]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    5. [5]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    6. [6]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    7. [7]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    8. [8]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    9. [9]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    10. [10]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    13. [13]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    16. [16]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    19. [19]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    20. [20]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

Metrics
  • PDF Downloads(0)
  • Abstract views(783)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return