Citation: Sha-Ni Hu, Yu Lin, Guo-Zhang Wu. Nanoparticle Dispersion and Glass Transition Behavior of Polyimide-grafted Silica Nanocomposites[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 100-108. doi: 10.1007/s10118-019-2300-6 shu

Nanoparticle Dispersion and Glass Transition Behavior of Polyimide-grafted Silica Nanocomposites

  • How to control the spatial distribution of nanoparticles to meet different performance requirements is a constant challenge in the field of polymer nanocomposites. Current studies have been focused on the flexible polymer chain systems. In this study, the rigid polyimide (PI) chain grafted silica particles with different grafting chain lengths and grafting densities were prepared by " grafting to” method, and the influence of polymerization degree of grafted chains (N), matrix chains (P), and grafting density (σ) on the spatial distribution of nanoparticles in the PI matrix was explored. The glass transition temperature (Tg) of PI composites was systematically investigated as well. The results show that silica particles are well dispersed in polyamic acid composite systems, while aggregation and small clusters appear in PI nanocomposites after thermal imidization. Besides, the particle size has no impact on the spatial distribution of nanoparticles. When \begin{document}${ {\textit{σ}} \cdot {N^{0.5}} \ll {\left( {N/P} \right)^2}}$\end{document}, the grafted and matrix chains interpenetrate, and the frictional resistance of the segment increases, resulting in restricted relaxation kinetics and Tg increase of the PI composite system. In addition, smaller particle size and longer grafted chains are beneficial to improving Tg of composites. These results are all propitious to complete the microstructure control theory of nanocomposites and make a theoretical foundation for the high performance and multi-function of PI nanocomposites.
  • 加载中
    1. [1]

      Oh, H.; Green, P. F. Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nat. Mater. 2009, 8, 139−143.  doi: 10.1038/nmat2354

    2. [2]

      Akcora, P.; Liu, H.; Kumar, S. K.; Moll, J.; Li, Y.; Benicewicz, B. C.; Schadler, L. S.; Acehan, D.; Panagiotopoulos, A. Z.; Pryamitsyn, V. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 2009, 8, 354−359.  doi: 10.1038/nmat2404

    3. [3]

      Liu, L. P.; Lin, Y.; Guan, A. G.; Wu, G. Z. Tuning spatial distribution of polystyrene-grafted silica nanoparticles in different polymer matrices. Acta Polymerica Sinica (in Chinese) 2016, 1546−1554.

    4. [4]

      Tan, Y. Q.; Wang, L. B.; Xiao, J. L.; Zhang, X.; Wang, Y.; Liu, C.; Zhang, H. W.; Liu, C. Z.; Xia, Y. Z.; Sui, K. Y. Synchronous enhancement and stabilization of graphene oxide liquid crystals: inductive effect of sodium alginates in different concentration zones. Polymer 2019, 160, 107−114.  doi: 10.1016/j.polymer.2018.11.041

    5. [5]

      Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; Van, H. B.; Guan, Z.; Chen, G.; Krishnan, R. S. General strategies for nanoparticle dispersion. Science 2006, 311, 1740−1743.  doi: 10.1126/science.1122225

    6. [6]

      Lin, Y.; Liu, L. P.; Zhang, D. G.; Liu, Y. H.; Guan, A. G.; Wu, G. Z. Unexpected segmental dynamics in polystyrene-grafted silica nanocomposites. Soft Matter 2016, 12, 8542−8553.  doi: 10.1039/C6SM01321J

    7. [7]

      Green, P. F. The structure of chain end-grafted nanoparticle/homopolymer nanocomposites. Soft Matter 2011, 7, 7914−7926.  doi: 10.1039/c1sm05076a

    8. [8]

      Kumar, S. K.; Jouault, N.; Benicewicz, B.; Neely, T. Nanocomposites with polymer grafted nanoparticles. Macromolecules 2013, 46, 3199−3214.  doi: 10.1021/ma4001385

    9. [9]

      Sunday, D. F.; Green, D. L. Thermal and rheological behavior of polymer grafted nanoparticles. Macromolecules 2015, 48, 8651−8659.  doi: 10.1021/acs.macromol.5b00987

    10. [10]

      Xue, Y. H.; Zhu, Y. L.; Quan, W.; Qu, F. H.; Han, C.; Fan, J. T.; Liu, H. Polymer-grafted nanoparticles prepared by surface-initiated polymerization: the characterization of polymer chain conformation, grafting density and polydispersity correlated to the grafting surface curvature. Phys. Chem. Chem. Phys. 2013, 15, 15356−15364.  doi: 10.1039/c3cp51960k

    11. [11]

      Hasegawa, R.; Aoki, Y.; Doi, M. Optimum graft density for dispersing particles in polymer melts. Macromolecules 1996, 29, 6656−6662.  doi: 10.1021/ma960365x

    12. [12]

      Ndoro, T. V. M.; Voyiatzis, E.; Ghanbari, A.; Theodorou, D. N.; Böhm, M. C.; Müller-Plathe, F. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: atomistic molecular dynamics simulations. Macromolecules 2011, 44, 2316−2327.  doi: 10.1021/ma102833u

    13. [13]

      Mansoori, Y.; Roojaei, K.; Zamanloo, M. R.; Imanzadeh, G. Polymer-clay nanocomposites: chemical grafting of polystyrene onto Cloisite 20A. Chinese J. Polym. Sci. 2012, 30, 815−823.  doi: 10.1007/s10118-012-1188-1

    14. [14]

      Chevigny, C.; Dalmas, F.; Cola, E. D.; Gigmes, D.; Bertin, D.; Boué, F.; Jestin, J. Polymer-grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Macromolecules 2011, 44, 122−133.  doi: 10.1021/ma101332s

    15. [15]

      Pandey, Y. N.; Papakonstantopoulos, G. J.; Doxastakis, M. Polymer/nanoparticle interactions: bridging the gap. Macromolecules 2013, 46, 5097−5106.  doi: 10.1021/ma400444w

    16. [16]

      Volgin, I. V.; Larin, S. V.; Lyulin, S. V. Diffusion of nanoparticles in polymer systems. Polym. Sci. Ser. C 2018, 60, 122−134.

    17. [17]

      O'Reilly, M. V.; Winey, K. I. Silica nanoparticles densely grafted with PEO for ionomer plasticization. RSC Adv. 2015, 5, 19570−19580.  doi: 10.1039/C4RA15178J

    18. [18]

      Shi, D. W.; Lai, X. L.; Jiang, Y. P.; Yan, C.; Liu, Z. Y.; Yang, W.; Yang, M. B. Synthesis of inorganic silica grafted three-arm PLLA and their behaviors for PLA matrix. Chinese J. Polym. Sci. 2019, 37, 216−226.  doi: 10.1007/s10118-019-2191-6

    19. [19]

      Purohit, P. J.; Huacuja-Sanchez, J. E.; Wang, D. Y.; Emmerling, F.; Thunemann, A.; Heinrich, G.; Schonhals, A. Structure-property relationships of nanocomposites based on polypropylene and layered double hydroxides. Macromolecules 2011, 44, 4342−4354.  doi: 10.1021/ma200323k

    20. [20]

      Chen, L.; Zheng, K.; Tian, X. Y.; Hu, K.; Wang, R. X.; Liu, C.; Li, Y.; Cui, P. Double glass transitions and interfacial immobilized layer in in-situ-synthesized poly(vinyl alcohol)/silica nanocomposites. Macromolecules 2010, 43, 1076−1082.  doi: 10.1021/ma901267s

    21. [21]

      Bogoslovov, R. B.; Roland, C. M.; Ellis, A. R.; Randall, A. M.; Robertson, C. G. Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate). Macromolecules 2008, 41, 1289−1296.  doi: 10.1021/ma702372a

    22. [22]

      Schonhals, A.; Goering, H.; Costa, F. R.; Wagenknecht, U.; Heinrich, G. Dielectric properties of nanocomposites based on polyethylene and layered double hydroxide. Macromolecules 2009, 42, 4165−4174.  doi: 10.1021/ma900077w

    23. [23]

      Lin, Y.; Liu, L. P.; Cheng, J. Q.; Shangguan, Y. G.; Yu, W. W.; Qiu, B. W.; Zheng, Q. Segmental dynamics and physical aging of polystyrene/silver nanocomposites. RSC Adv. 2014, 4, 20086−20093.  doi: 10.1039/C4RA00517A

    24. [24]

      Rittigstein, P.; Torkelson, J. M. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 2935−2943.  doi: 10.1002/(ISSN)1099-0488

    25. [25]

      Chakraborty, S.; Kumar, M.; Suresh, K.; Pugazhenthi, G. Investigation of structural, rheological and thermal properties of PMMA/Oni-AL LDH nanocomposites synthesized via solvent blending method: effect of LDH loading. Chinese J. Polym. Sci. 2016, 34, 739−754.  doi: 10.1007/s10118-016-1786-4

    26. [26]

      Rittigstein, P.; Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 2007, 6, 278.  doi: 10.1038/nmat1870

    27. [27]

      Lin, Y.; Liu, L. P.; Xu, G. M.; Zhang, D. G.; Guan, A. G.; Wu, G. Z. Interfacial interactions and segmental dynamics of poly(vinyl acetate)/silica nanocomposites. J. Phys. Chem. C 2015, 119, 12956−12966.  doi: 10.1021/acs.jpcc.5b01240

    28. [28]

      Song, Y. H.; Bu, J.; Zuo, M.; Gao, Y.; Zhang, W. J.; Zheng, Q. Glass transition of poly(methyl methacrylate) filled with nanosilica and core-shell structured silica. Polymer 2017, 127, 141−149.  doi: 10.1016/j.polymer.2017.08.038

    29. [29]

      Kim, S. A.; Mangal, R.; Archer, L. A. Relaxation dynamics of nanoparticle-tethered polymer chains. Macromolecules 2015, 48, 6280−6293.  doi: 10.1021/acs.macromol.5b00791

    30. [30]

      Park, C.; Ounaies, Z.; Watson, K. A.; Crooks, R. E.; Smith, J.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; Clair, T. L. S. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 2002, 364, 303−308.  doi: 10.1016/S0009-2614(02)01326-X

    31. [31]

      Zhu, B. K.; Xie, S. H.; Xu, Z. K.; Xu, Y. Y. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos. Sci. Technol. 2006, 66, 548−554.  doi: 10.1016/j.compscitech.2005.05.038

    32. [32]

      Yen, C. T.; Chen, W. C.; Liaw, D. J.; Lu, H. Y. Synthesis and properties of new polyimide-silica hybrid films through both intrachain and interchain bonding. Polymer 2003, 44, 7079−7087.  doi: 10.1016/j.polymer.2003.09.004

    33. [33]

      Gong, G. M.; Gao, K.; Wu, J. T.; Sun, N.; Zhou, C.; Zhao, Y.; Jiang, L. A highly durable silica/polyimide superhydrophobic nanocomposite film with excellent thermal stability and abrasion resistant performances. J. Mater. Chem. A 2014, 3, 713−718.

    34. [34]

      Chang, C. C.; Chen, W. C. Synthesis and optical properties of polyimide-silica hybrid thin films. Chem. Mater. 2002, 14, 4242−4248.  doi: 10.1021/cm0202310

    35. [35]

      Shen, J. J.; Zhang, D. G.; Liu, X.; Tang, Y. C.; Lin, Y.; Wu, G. Z. Facile fabrication of high-performance polyimide nanocomposites with in situ formed "impurity-free" dispersants. Chinese J. Polym. Sci. 2016, 34, 532−541.  doi: 10.1007/s10118-016-1771-y

    36. [36]

      Jian, S. J.; Hu, X. W.; Zou, Y.; Chen, S. L.; Hou, H. Q. The preparation and characterization for high-strength electrospun polyimide/Ag composite nanofibers. J. Jiangxi. Normal. Univ: Nat. Sci. Ed. 2012, 36, 1−4.

    37. [37]

      Yu, Q. Q.; Qi, S. L.; Wu, D. Z.; Wang, X. D.; Jin, R. G.; Wu, Z. P. Febrication of surface-nickelized polyimide composite films by surface modification and in situ reduction method. Polym. Mater. Sci. Eng. 2012, 28, 152−154.

    38. [38]

      Hsu, C. T.; Wu, C.; Chuang, C. N.; Chen, S. H.; Chiu, W. Y.; Hsieh, K. H. Synthesis and characterization of nano silver-modified graphene/PEDOT:PSS for highly conductive and transparent nanocomposite films. J. Polym. Res. 2015, 22, 200.  doi: 10.1007/s10965-015-0847-7

    39. [39]

      Wu, G. Z.; Li, B. P.; Jiang, J. D. Carbon black self-networking induced co-continuity of immiscible polymer blends. Polymer 2010, 51, 2077−2083.  doi: 10.1016/j.polymer.2010.03.007

    40. [40]

      Torquato, S.; Hyun, S.; Donev, A. Multifunctional composites: Optimizing microstructures for simultaneous transport of heat and electricity. Phys. Rev. Lett. 2002, 89, 266601.  doi: 10.1103/PhysRevLett.89.266601

    41. [41]

      Ragosta, G.; Abbate, M.; Musto, P.; Scarinzi, G. Effect of the chemical structure of aromatic polyimides on their thermal aging, relaxation behavior and mechanical properties. J. Mater. Sci. 2012, 47, 2637−2647.  doi: 10.1007/s10853-011-6089-0

    42. [42]

      Meador, M. A. B.; McMillon, E.; Sandberg, A.; Barrios, E.; Wilmoth, N. G.; Mueller, C. H.; Miranda, F. A. Dielectric and other properties of polyimide aerogels containing fluorinated blocks. ACS Appl. Mater. Intefaces 2014, 6, 6062−6068.  doi: 10.1021/am405106h

    43. [43]

      Marques, M. E.; Mansur, A. A. P.; Mansur, H. S. Chemical functionalization of surfaces for building three-dimensional engineered biosensors. Appl. Surf. Sci. 2013, 275, 347−360.  doi: 10.1016/j.apsusc.2012.12.099

    44. [44]

      Park, S. J.; Cho, K. S.; Kim, S. H. A study on dielectric characteristics of fluorinated polyimide thin film. J. Colloid. Interf. Sci. 2004, 272, 384−390.  doi: 10.1016/j.jcis.2003.12.027

    45. [45]

      Wolany, D.; Fladung, T.; Duda, L.; Lee, J. W.; Gantenfort, T.; Wiedmann, L.; Benninghoven, A. Combined ToF-SIMS/XPS study of plasma modification and metallization of polyimide. Surf. Interface Anal. 1999, 27, 609−617.  doi: 10.1002/(ISSN)1096-9918

    46. [46]

      Iyer, K. S.; Luzinov, I. Effect of macromolecular anchoring layer thickness and molecular weight on polymer grafting. Macromolecules 2005, 37, 9538−9545.

    47. [47]

      Liu, H.; Zhao, H.Y.; Florian, M. P.; Qian, H. J.; Sun, Z. Y.; Lu, Z. Y. Distribution of the number of polymer chains grafted on nanoparticles fabricated by grafting-to and grafting-from procedures. Macromolecules 2018, 51, 3758−3766.  doi: 10.1021/acs.macromol.8b00309

    48. [48]

      Xing, J. Y.; Lu, Z. Y.; Liu, H.; Xue, Y. H. The selectivity of nanoparticles for polydispersed ligand chains during the grafting-to process: a computer simulation study. Phys. Chem. Chem. Phys. 2018, 20, 2066−2074.  doi: 10.1039/C7CP07818H

    49. [49]

      Wang, W.; Wu, J. S. Interfacial influence on mechanical properties of polypropylene/polypropylene-grafted silica nanocomposites. J. Appl. Polym. Sci. 2018, 135, 45887.  doi: 10.1002/app.45887

    50. [50]

      Iyer, K. S.; Zdyrko, B.; Malz, H.; Pionteck, J.; Luzinov, I. Polystyrene layers grafted to macromolecular anchoring layer. Macromolecules 2003, 36, 6519−6526.  doi: 10.1021/ma034460z

    51. [51]

      Llorente, A.; Serrano, B.; Baselga, J. The effect of polymer grafting in the dispersibility of alumina/polysulfone nanocomposites. Macromol. Res. 2016, 25, 1−10.

    52. [52]

      Lin, Y.; Hu, S. N.; Wu, G. Z. Structure, dynamics and mechanical properties of polyimide-grafted silica nanocomposites. J. Phys. Chem. C 2019, 123, 6616−6626.  doi: 10.1021/acs.jpcc.8b12519

    53. [53]

      Grala, M.; Bartczak, Z.; Różański, A. Morphology, thermal and mechanical properties of polypropylene/SiO2 nanocomposites obtained by reactive blending. J. Polym. Res. 2016, 23, 25.  doi: 10.1007/s10965-015-0914-0

    54. [54]

      Natarajan, B.; Neely, T.; Rungta, A.; Benicewicz, B. C.; Schadler, L. S. Thermomechanical properties of bimodal brush modified nanoparticle composites. Macromolecules 2013, 46, 4909−4918.  doi: 10.1021/ma400553c

    55. [55]

      Ferreira, P. G.; Ajdari, A.; Leibler, L. Scaling law for entropic effects at interfaces between grafted layers and polymer melts. Macromolecules 1998, 31, 3994−4003.  doi: 10.1021/ma9712460

    56. [56]

      Chao, H.; Riggleman, R. A. Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites. Polymer 2013, 54, 5222−5229.  doi: 10.1016/j.polymer.2013.07.018

  • 加载中
    1. [1]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    2. [2]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    3. [3]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    4. [4]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    5. [5]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    6. [6]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    7. [7]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    8. [8]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    9. [9]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    10. [10]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    11. [11]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    12. [12]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    13. [13]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    14. [14]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    15. [15]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    16. [16]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    17. [17]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    18. [18]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    19. [19]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    20. [20]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

Metrics
  • PDF Downloads(0)
  • Abstract views(806)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return