Bio-based and Biodegradable Electrospun Fibers Composed of Poly(L-lactide) and Polyamide 4
- Corresponding author: Tao Chen, tchen@ecust.edu.cn
Citation:
Tao Chen, Guo-Cheng Zhong, Yuan-Ting Zhang, Li-Ming Zhao, Yong-Jun Qiu. Bio-based and Biodegradable Electrospun Fibers Composed of Poly(L-lactide) and Polyamide 4[J]. Chinese Journal of Polymer Science,
;2020, 38(1): 53-62.
doi:
10.1007/s10118-019-2299-8
Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Adv. Mater. 2000, 12, 1841−1846.
doi: 10.1002/(ISSN)1521-4095
Isono, T.; Kondo, Y.; Otsuka, I.; Nishiyama, Y.; Borsali, R.; Kakuchi, T.; Satoh, T. Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(L-lactide) and poly(D-lactide) arms. Macromolecules 2013, 46, 8509−8518.
doi: 10.1021/ma401375x
Li, T.; Zhang, J.; Schneiderman, D. K.; Francis, L. F.; Bates, F. S. Toughening glassy poly(lactide) with block copolymer micelles. ACS Macro Lett. 2016, 5, 359−364.
doi: 10.1021/acsmacrolett.6b00063
Kakroodi, A. R.; Kazemi, Y.; Nofar, M.; Park, C. B. Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem. Eng. J. 2017, 308, 772−782.
doi: 10.1016/j.cej.2016.09.130
Chen, L.; Hu, K.; Sun, S. T.; Jiang, H.; Huang, D.; Zhang, K. Y.; Pan, L.; Li, Y. S. Toughening poly(lactic acid) with imidazolium-based elastomeric ionomers. Chinese J. Polym. Sci. 2018, 36, 1342−1352.
doi: 10.1007/s10118-018-2143-6
Chiu, F. C.; Wang, S. W.; Peng, K. Y.; Lee, R. S. Synthesis and characterization of amphiphilic PLA-(PαN3CL-g-PBA) copolymers by ring-opening polymerization and click reaction. Polymer 2012, 53, 3476−3484.
doi: 10.1016/j.polymer.2012.06.004
Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338−356.
doi: 10.1016/j.progpolymsci.2009.12.003
Rogalsky, S.; Bardeau, J. F.; Wu, H.; Lyoshina, L.; Bulko, O.; Tarasyuk, O.; Makhno, S.; Cherniavska, T.; Kyselov, Y.; Koo, J. H. Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites. J. Mater. Sci. 2016, 51, 7716−7730.
doi: 10.1007/s10853-016-0054-x
Ge, Y. P.; Yuan, D.; Luo, Z. L.; Wang, B. B. Synthesis and characterization of poly(ester amide) from renewable resources through melt polycondensation. eXPRESS Polym. Lett. 2014, 8, 50−54.
doi: 10.3144/expresspolymlett.2014.6
Stoclet, G.; Seguela, R.; Lefebvre, J. M. Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer 2011, 52, 1417−1425.
doi: 10.1016/j.polymer.2011.02.002
Fonseca, A. C.; Gil, M. H.; Simões, P. N. Biodegradable poly(ester amide)s—a remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications. Prog. Polym. Sci. 2014, 39, 1291−1311.
doi: 10.1016/j.progpolymsci.2013.11.007
Nakayama, A.; Yamano, N.; Kawasaki, N.; Nakayama, Y. Synthesis and biodegradation of poly(2-pyrrolidone-co-ε-caprolactone)s. Polym. Degrad. Stab. 2013, 98, 1882−1888.
doi: 10.1016/j.polymdegradstab.2013.04.011
Massimo, L.; Arturo, L. Q. M. Block copolymers as a tool for nanomaterial fabrication. Adv. Mater. 2003, 15, 1583−1594.
doi: 10.1002/(ISSN)1521-4095
Gardella, L.; Mincheva, R.; De Winter, J.; Tachibana, Y.; Raquez, J. M.; Dubois, P.; Monticelli, O. Synthesis, characterization and stereocomplexation of polyamide 11/polylactide diblock copolymers. Eur. Polym. J. 2018, 98, 83−93.
doi: 10.1016/j.eurpolymj.2017.11.008
Barnes, C. E. Nylon 4-development and commercialization. Lenzinger Ber. 1987, 62, 62−66.
Kawasaki, N.; Yamano, N.; Nakayama, A. Polyamide 4-block-poly(vinyl acetate) via a polyamide4 azo macromolecular initiator: thermal and mechanical behavior, biodegradation, and morphology. J. Appl. Polym. Sci. 2015, 132, 42466.
Tachibana, K.; Hashimoto, K.; Yoshikawa, M.; Okawa, H. Isolation and characterization of microorganisms degrading nylon 4 in the composted soil. Polym. Degrad. Stab. 2010, 95, 912−917.
doi: 10.1016/j.polymdegradstab.2010.03.031
Kazuhiko, H.; Tsuyoshi, H.; Masahiko, O. Degradation of several polyamides in soils. J. Appl. Polym. Sci. 1994, 54, 1579−1583.
doi: 10.1002/app.1994.070541023
Tachibana, K.; Urano, Y.; Numata, K. Biodegradability of nylon 4 film in a marine environment. Polym. Degrad. Stab. 2013, 98, 1847−1851.
doi: 10.1016/j.polymdegradstab.2013.05.007
Kawasaki, N.; Nakayama, A.; Yamano, N.; Takeda, S.; Kawata, Y.; Yamamoto, N.; Aiba, S. I. Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4. Polymer 2005, 46, 9987−9993.
doi: 10.1016/j.polymer.2005.06.092
Yamano, N.; Kawasaki, N.; Ida, S.; Nakayama, Y.; Nakayama, A. Biodegradation of polyamide 4 in vivo. Polym. Degrad. Stab. 2017, 137, 281−288.
doi: 10.1016/j.polymdegradstab.2017.02.004
Kim, J. W.; Kim, H. S. Synthesis and characteristics of poly(L-lactic acid-block-γ-aminobutyric acid). Text. Sci. Eng. 2015, 52, 53−58.
doi: 10.12772/TSE.2015.52.053
Lowe, A. B. Thiol-ene " click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1, 17−36.
doi: 10.1039/B9PY00216B
Li, M. Q.; Tang, Z. H.; Wang, C.; Zhang, Y.; Cui, H. T.; Chen, X. S. Efficient side-chain modification of dextran via base-catalyzed epoxide ring-opening and thiol-ene click chemistry in aqueous media. Chinese. J. Polym. Sci. 2014, 32, 969−974.
doi: 10.1007/s10118-014-1489-7
Liu, W.; Dong, C. M. Versatile strategy for the synthesis of hyperbranched poly(ε-caprolactone)s and polypseudorotaxanes thereof. Macromolecules 2010, 43, 8447−8455.
doi: 10.1021/ma101730m
Hou, X.; Li, Q.; He, Y.; Jia, L.; Li, Y.; Zhu, Y.; Cao, A. Visualization of spontaneous aggregates by diblock poly(styrene)-b-poly(L-lactide)/poly(D-lactide) pairs in solution with new fluorescent CdSe quantum dot labels. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 1393−1405.
Kalarickal, N. C.; Rimmer, S.; Sarker, P.; Leroux, J. C. Thiol-functionalized poly(ethylene glycol)-b-polyesters synthesis and characterization. Macromolecules 2007, 40, 1874−1880.
doi: 10.1021/ma062377g
Hoyle, C. E.; Lee, T. Y.; Roper, T. Thiol-enes: chemistry of the past with promise for the future. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5301−5338.
doi: 10.1002/(ISSN)1099-0518
Montañez, M. I.; Campos, L. M.; Antoni, P.; Hed, Y.; Walter, M. V.; Krull, B. T.; Khan, A.; Hult, A.; Hawker, C. J.; Malkoch, M. Accelerated growth of dendrimers via thiol-ene and esterification reactions. Macromolecules 2010, 43, 6004−6013.
doi: 10.1021/ma1009935
Cho, A. R.; Shin, D. M.; Jung, H. W.; Hyun, J. C.; Lee, J. S.; Cho, D.; Joo, Y. L. Effect of annealing on the crystallization and properties of electrospun polylatic acid and nylon 6 fibers. J. Appl. Polym. Sci. 2011, 120, 752−758.
doi: 10.1002/app.v120.2
Baji, A.; Mai, Y. W.; Wong, S. C.; Abtahi, M.; Chen, P. Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 2010, 70, 703−718.
doi: 10.1016/j.compscitech.2010.01.010
Giller, C. B.; Chase, D. B.; Rabolt, J. F.; Snively, C. M. Effect of solvent evaporation rate on the crystalline state of electrospun nylon 6. Polymer 2010, 51, 4225−4230.
doi: 10.1016/j.polymer.2010.06.057
Schroeder, L. R.; Cooper, S. L. Hydrogen bonding in polyamides. J. Appl. Polym. Sci. 1976, 47, 4310−4317.
Zhang, P.; Tian, R.; Na, B.; Lv, R.; Liu, Q. Intermolecular ordering as the precursor for stereocomplex formation in the electrospun polylactide fibers. Polymer 2015, 60, 221−227.
doi: 10.1016/j.polymer.2015.01.049
Li, Y. J.; Chen, F.; Nie, J.; Yang, D. Z. Electrospun poly(lactic acid)/chitosan core-shell structure nanofibers from homogeneous solution. Carbohyd. Polym. 2012, 90, 1445−1451.
doi: 10.1016/j.carbpol.2012.07.013
Zhang, J. F.; Yang, D. Z.; Xu, F.; Zhang, Z. P.; Yin, R. X.; Nie, J. Electrospun core-shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules 2009, 42, 5278−5284.
doi: 10.1021/ma900657y
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Guanxiong Yu , Chengkai Xu , Huaqiang Ju , Jie Ren , Guangpeng Wu , Chengjian Zhang , Xinghong Zhang , Zhen Xu , Weipu Zhu , Hao-Cheng Yang , Haoke Zhang , Jianzhao Liu , Zhengwei Mao , Yang Zhu , Qiao Jin , Kefeng Ren , Ziliang Wu , Hanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
Yuling Ma , Dongqing Liu , Tao Zhang , Chengjie Song , Dongmei Liu , Peizhi Wang , Wei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Tiantian Long , Hongmei Luo , Jingbo Sun , Fengniu Lu , Yi Chen , Dong Xu , Zhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423