Citation: Lu Chen, Xin-Lin Tuo, Xi-Chuan Fan, Chun-Jie Xie, Bao-Hua Guo, Jian Yu, Ping Hu, Zhao-Xia Guo. Enhanced Mechanical Properties of Poly(arylene sulfide sulfone) Membrane by Co-electrospinning with Poly(m-xylene adipamide)[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 63-71. doi: 10.1007/s10118-019-2297-x shu

Enhanced Mechanical Properties of Poly(arylene sulfide sulfone) Membrane by Co-electrospinning with Poly(m-xylene adipamide)

  • Corresponding author: Zhao-Xia Guo, guozx@mail.tsinghua.edu.cn
  • Received Date: 10 March 2019
    Revised Date: 1 January 2019
    Available Online: 11 July 2019

  • The mechanical properties of poly(arylene sulfide sulfone) (PASS) electrospun membrane were significantly enhanced by co-electrospinning with semi-aromatic nylon poly(m-xylene adipamide) (MXD6), another engineering plastic with high thermal stability and good mechanical properties. The tensile strength of PASS membrane increased with increased incorporation of MXD6, and was tripled when 20% MXD6 was incorporated. The mechanism of the mechanical property improvement is the existence of hydrogen bonding interaction between PASS and MXD6 and between adjacent fibers at the intersections. Thermal properties of the PASS/MXD6 membranes were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), which showed that the membranes could be stably utilized up to 180 °C without any change in appearance and without decomposition. Contact angle measurements of all the membranes showed hydrophobic character. To demonstrate the potential applications of PASS/MXD6 blend membranes, their oil absorption capacities were evaluated with three oils of different viscosities, which proved that the PASS/MXD6 membranes are better absorbents than commercial non-woven polypropylene fibers. Therefore, PASS/MXD6 fibrous membranes produced by electrospinning have a great potential in practical applications.
  • 加载中
    1. [1]

      Liu, Z.; Zhang, S. Y.; Huang, G. S.; Zhang, K.; Wang, X. J.; Zhang, G.; Long, S. R.; Yang, J. Effects of polyarylene sulfide sulfone on the mechanical properties of glass fiber cloth-reinforced polyphenylene sulfide composites. High Perform. Polym. 2015, 27, 145−152.  doi: 10.1177/0954008314541789

    2. [2]

      Wang, X.; Zhang, M.; Liu, J.; Zhang, G.; Yang, J. Thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone crystal solvate. Chinese J. Polym. Sci. 2010, 28, 85−91.  doi: 10.1007/s10118-010-8215-x

    3. [3]

      Zhang, G.; Yuan, S.; Li, Z.; Long, S.; Yang, J. Poly(arylene ether sulfone) containing thioether units: synthesis, oxidation and properties. RSC Adv. 2014, 4, 23191−23201.  doi: 10.1039/C4RA02829E

    4. [4]

      Kong, Y.; Huang, G. S.; Zhang, G.; Wang, X. J.; Long, S. R.; Yang, J. The influence of processing aids on the properties of poly(arylene sulfide sulfone). High Perform. Polym. 2014, 26, 914−921.  doi: 10.1177/0954008314534278

    5. [5]

      Liu, Y.; Bhatnagara, A.; Ji, Q.; Riffle, J. S.; McGrath, J. E.; Geibel, J. F.; Kashiwagi, T. Influence of polymerization conditions on the molecular structure stability and physical behavior of poly(phenylene sulfide sulfone) homopolymers. Polymer 2000, 41, 5137−5146.  doi: 10.1016/S0032-3861(99)00571-6

    6. [6]

      Huang, H. M. Electrospinning of poly(arylene sulfide) nanofibers. Master's thesis, Sichuan University (Chengdu), 2007.

    7. [7]

      Liu, L.; Wang, X. J.; Wang, Y. Y.; Li, L.; Pan, K.; Yang, J.; Cao, B. Preparation and characterization of asymmetric poly(arylene sulfide sulfone) (PASS) solvent-resistant nanofiltration membranes. Mater. Lett. 2014, 132, 11−14.  doi: 10.1016/j.matlet.2014.05.154

    8. [8]

      Yuan, S.S.; Wang, J.; Li, X.; Zhu, J.Y.; Volodine, A.; Wang, X.; Yang, J.; van Puyvelde, P.; van der Bruggen, B. New promising polymer for organic solvent nanofiltration: Oxidized poly(arylene sulfide sulfone). J. Membr. Sci. 2018, 549, 438−445.  doi: 10.1016/j.memsci.2017.12.036

    9. [9]

      Chu, Z.; L.; Feng, Y. J.; Seeger, S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 2015, 54, 2328−2338.  doi: 10.1002/anie.201405785

    10. [10]

      Gu, G. Q; Han, C. B.; Lu, C. X.; He, C.; Jiang, T.; Gao, Z. L.; Li, C. J.; Wang, Z. L. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 2017, 11, 6211−6217.  doi: 10.1021/acsnano.7b02321

    11. [11]

      Feng, X.; Wang, B.; Wang, Q. N.; Li, C. J. Preparation and properties of polyacrylonitrile nanofiber membranes used for air filtering by electrospinning. J. Text. Res. 2017, 38, 6−11.

    12. [12]

      Shi, Y. Z.; Yang, D. Z.; Yu, R. M.; Liu, Y. X.; Qu, J.; Liu, B.; Yu, Z. Z. Efficient photocatalytic reduction approach for synthesizing chemically bonded N-doped TiO2/reduced graphene oxide hybrid as a freestanding electrode for high-performance lithium storage. ACS Appl. Energy Mater. 2018, 1, 4186−4195.  doi: 10.1021/acsaem.8b00836

    13. [13]

      Cheng, H. H.; Chen, F.; Yu, J.; Guo, Z. X. Gold-nanoparticle-decorated thermoplastic polyurethane electrospun fibers prepared through a chitosan linkage for catalytic applications. J. Appl. Polym. Sci. 2017, 134, 44336.

    14. [14]

      Xiong, X.; Li, Q.; Zhang, X. C.; Yu, J.; Guo, Z. X. Preparation, characterization and application of amine-functionalized poly(lactic acid) electrospun fibers. Chemical Journal of Chinese Universities (in Chinese) 2014, 35, 1323−1329.

    15. [15]

      Yuan, Z. Q.; Zhou, T.; Yin, Y. Y.; Cao, R.; Li, C. J.; Wang, Z. L. Transparent and flexible triboelectric sensing array for touch security applications. ACS Nano 2017, 11, 8364−8369.  doi: 10.1021/acsnano.7b03680

    16. [16]

      Yu, X. Q.; Zhang, W. S.; Zhang, P. P.; Su, Z. Q. Fabrication technologies and sensing applications of graphene-based composite films: advances and challenges. Biosens. Bioelectron. 2017, 89, 72−84.  doi: 10.1016/j.bios.2016.01.081

    17. [17]

      Zhang, M. F.; Zhao, X. N.; Zhang, G. H.; Wei, G.; Su, Z. Q. Electrospinning design of functional nanostructures for biosensor applications. J. Mater. Chem. B 2017, 5, 1699−1711.  doi: 10.1039/C6TB03121H

    18. [18]

      Su, Z. Q.; Ding, J. W.; Wei, G. Electrospinning: A facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Adv. 2014, 4, 52598−52610.  doi: 10.1039/C4RA07848A

    19. [19]

      Guan, X. Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Yan, X. R.; Shen, C. Y.; Guo, Z. H. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl. Mater. Interfaces 2016, 8, 14150−14159.  doi: 10.1021/acsami.6b02888

    20. [20]

      Zheng, Y. J.; Li, Y. L.; Dai, K.; Liu, M. R.; Zhou, K. K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Compos. Part A Appl. Sci. Manuf. 2017, 101, 41−49.  doi: 10.1016/j.compositesa.2017.06.003

    21. [21]

      Lin, J. Y.; Tian, F.; Shang, Y. W.; Wang, F. J.; Ding, B.; Yu, J. Y. Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale 2012, 4, 5316−5320.  doi: 10.1039/c2nr31515g

    22. [22]

      Yu, R. M.; Shi, Y. Z.; Yang, D. Z.; Liu, Y. X.; Qu, J.; Yu, Z. Z. Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad- spectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces 2017, 9, 21809−21819.  doi: 10.1021/acsami.7b04655

    23. [23]

      Liu, Y. M.; Li, Q.; Liu, H. H.; Cheng, H. H.; Yu, J.; Guo, Z. X. Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chinese J. Polym. Sci. 2017, 35, 713−720.  doi: 10.1007/s10118-017-1928-3

    24. [24]

      Li, P.; Zhang, Z. F.; Su, Z. Q.; Wei, G. Thermosensitive polymeric micelles based on the triblock copolymer poly(D,L-lactide)-b-poly(N-isopropyl acrylamide)-b-poly(D,L-lactide) for controllable drug delivery. J. Appl. Polym. Sci. 2017, 134, 45304.  doi: 10.1002/app.45304

    25. [25]

      Behrens, A. M.; Sikorski, M. J.; Kofinas, P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. A 2014, 102, 4182−4194.  doi: 10.1002/jbm.a.v102.11

    26. [26]

      Cheng, H. H.; Xiong, J.; Xie, Z. N.; Zhu, Y. T.; Liu, Y. M.; Wu, Z. Y.; Yu, J.; Guo, Z. X. Thrombin-loaded poly(butylene succinate)-based electrospun membranes for rapid hemostatic application. Macromol. Mater. Eng. 2018, 303, 1700395.  doi: 10.1002/mame.v303.2

    27. [27]

      Zhang, W. S.; Yu, X. Q.; Li, Y.; Su, Z. Q.; Jandt, K. D.; Wei, G. Protein-mimetic peptide nanofibers: motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog. Polym. Sci. 2018, 80, 94−124.  doi: 10.1016/j.progpolymsci.2017.12.001

    28. [28]

      Khorshidi, S.; Solouk, A.; Mirzadeh, H.; Mazinani, S.; Lagaron, J. M.; Sharifi, S.; Ramakrishna, S. A review of key challenges of electrospun scaffolds for tissue-engineering applications: challenges regarding electrospun scaffolds: A review. J. Tissue Eng. Regen. Med. 2016, 10, 715−738.  doi: 10.1002/term.v10.9

    29. [29]

      Dhandayuthapani, B.; Krishnan, U. M.; Sethuraman, S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 264−272.

    30. [30]

      Lee, J.; Tae, G.; Kim, Y. H.; Park, I. S.; Kim, S. H.; Kim, S. H. The effect of gelatin incorporation into electrospun poly(L-lactide-co-ε-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials 2008, 29, 1872−1879.  doi: 10.1016/j.biomaterials.2007.12.029

    31. [31]

      Chen, L.; Cheng, H. H.; Xiong, J.; Zhu, Y. T.; Zhang, H. P.; Xiong, X.; Liu, Y. M.; Yu, J.; Guo, Z. X. The effect of gelatin incorporation into electrospun poly(L-lactide-co-ε-caprolactone) fibers on mechanical properties and cytocompatibility. Chinese J. Polym. Sci. 2018, 36, 1063−1069.  doi: 10.1007/s10118-018-2112-0

    32. [32]

      Zhang, B. Y.; Ge, Q. S.; Guo, Z. X.; Yu, J. Effects of electrically inert fillers on the properties of poly(m-xylene adipamide)/multiwalled carbon nanotube composites. Chinese J. Polym. Sci. 2016, 34, 1032−1038.  doi: 10.1007/s10118-016-1821-5

    33. [33]

      Guo, Y. L.; Zhang, R. Z.; Wu, K.; Chen, F.; Fu, Q. Preparation of nylon MXD6/EG/CNTs ternary composites with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Chinese J. Polym. Sci. 2017, 35, 1497−1507.  doi: 10.1007/s10118-017-1985-7

    34. [34]

      Tan, Y. L.; Huang, C. H.; Guo, Z. X.; Yu, J. Water absorption characteristics of different polyamide resins and their effects on the diffusion and polymerization of St monomer. Chemical Journal of Chinese Universities (in Chinese) 2018, 39, 2825−2832.

    35. [35]

      Doudou, B. B.; Dargent, E.; Grenet, J. Crystallization and melting behaviour of poly(m-xylene adipamide). J. Therm. Anal. Calorim. 2006, 85, 409−415.  doi: 10.1007/s10973-005-7299-y

    36. [36]

      Liu, H. H.; Li, Q.; Liang, X.; Xiong, X.; Yu, J.; Guo, Z. X. Antibacterial polycaprolactone electrospun fiber mats prepared by soluble eggshell membrane protein-assisted adsorption of silver nanoparticles. J. Appl. Polym. Sci. 2016, 133, 43850.

    37. [37]

      Feng, L. D.; Bian, X. C.; Li, G.; Chen, Z. M.; Cui, Y.; Chen, X. S. Determination of ultra-low glass transition temperature via differential scanning calorimetry. Polym. Test. 2013, 32, 1368−1372.  doi: 10.1016/j.polymertesting.2013.08.015

    38. [38]

      Lim, H. S.; Park, S. H.; Koo, S. H.; Kwark, Y. J.; Thomas, E. L.; Jeong, Y. J.; Cho, J. H. Superamphiphilic Janus fabric. Langmuir 2010, 26, 19159−19162.  doi: 10.1021/la103829c

    39. [39]

      Ma, M. L.; Hill, R. M.; Rutledge, G. C. A review of recent results on superhydrophobic materials based on micro- and nanofibers. J. Adhes. Sci. Technol. 2008, 22, 1799−1817.  doi: 10.1163/156856108X319980

    40. [40]

      Li, H. Y.; Li, Y.; Yang, W. M.; Cheng, L. S.; Tan, J. Needleless melt-electrospinning of biodegradable poly(lactic acid) ultrafine fibers for the removal of oil from water. Polymers 2017, 9, 3.  doi: 10.3390/polym9020003

    41. [41]

      Qiao, Y.; Zhao, L. L.; Li, P.; Sun, H. X.; Li, S. Electrospun polystyrene/polyacrylonitrile fiber with high oil sorption capacity. J. Reinf. Plast. Compos. 2014, 33, 1849−1858.  doi: 10.1177/0731684414547554

    42. [42]

      Ji, H.; Zhao, R.; Li, Y. M.; Sun, B. L.; Li, Y. Z.; Zhang, N.; Qiu, J.; Li, X.; Wang, C. Robust and durable superhydrophobic electrospun nanofibrous mats via a simple Cu nanocluster immobilization for oil-water contamination. Colloids Surf. Physicochem. Eng. Asp. 2018, 538, 173−183.  doi: 10.1016/j.colsurfa.2017.10.064

    43. [43]

      Lin, J. Y.; Tian, F.; Shang, Y. W.; Wang, F. J.; Ding, B.; Yu, J. Y.; Guo, Z. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale 2013, 5, 2745−2755.  doi: 10.1039/c3nr34008b

    44. [44]

      Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. Y. Controlling the secondary surface morphology of electrospun PVDF nanofibers by regulating the solvent and relative humidity. Nanoscale Res. Lett. 2018, 13, 285.  doi: 10.1186/s11671-018-2705-0

    45. [45]

      Wang, J.; Hou, J. B.; Marquez, E.; Moore, R. B.; Nain, A. S. Aligned assembly of nano and microscale polystyrene tubes with controlled morphology. Polymer 2014, 55, 3008−3014.  doi: 10.1016/j.polymer.2014.04.046

  • 加载中
    1. [1]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    4. [4]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    5. [5]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    6. [6]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    7. [7]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    10. [10]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    11. [11]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    12. [12]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    13. [13]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    14. [14]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    15. [15]

      Lu LiSuticha ChuntaXianzi ZhengHaisheng HeWei WuYi Luβ-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chinese Chemical Letters, 2024, 35(4): 108662-. doi: 10.1016/j.cclet.2023.108662

    16. [16]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    17. [17]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    18. [18]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    19. [19]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    20. [20]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

Metrics
  • PDF Downloads(0)
  • Abstract views(735)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return