Citation: Ann-Kathrin Danner, Daniel Leibig, Lea-Marie Vogt, Holger Frey. Monomer-activated Copolymerization of Ethylene Oxide and Epichlorohydrin: In Situ Kinetics Evidences Tapered Block Copolymer Formation[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 912-918. doi: 10.1007/s10118-019-2296-y shu

Monomer-activated Copolymerization of Ethylene Oxide and Epichlorohydrin: In Situ Kinetics Evidences Tapered Block Copolymer Formation

  • Corresponding author: Holger Frey, hfrey@uni-mainz.de
  • Received Date: 12 April 2019
    Revised Date: 16 May 2019
    Available Online: 4 July 2019

  • The monomer-activated anionic ring-opening copolymerization (AROP) of ethylene oxide (EO) and epichlorohydrin (ECH) using tetraoctylammonium bromide as an initiator and triisobutylaluminum (i-Bu3Al) as an activator was studied. The properties of the copolymers as well as the microstructure have been analyzed in detail via an in situ NMR kinetics study. The statistical copolymers exhibited molecular weights ranging from 2350 g·mol–1 to 38000 g·mol–1 (measured by SEC, PEG-standards) and moderate dispersities of 1.27–1.44. The thermal property tests revealed both a glass transition and melting for all copolymers, supporting a block-like nature. Applying in situ NMR kinetic measurements, the reactivity ratios of EO and ECH were determined to be strongly disparate, i.e., rEO = 9.2 and rECH = 0.10. This shows that the simple one-pot statistical anionic copolymerization of EO and ECH via the monomer-activated AROP resulted in the formation of strongly tapered, block-like structures. Furthermore, post-polymerization functionalization of the reactive chloromethyl groups by nucleophilic displacement was investigated for the copolymers. Copolymerization of EO and ECH offers a broad platform for further functionalization and therefore the possibility to prepare a variety of multifunctional PEGs.
  • 加载中
    1. [1]

      Frey, H.; Haag, R. Dendritic polyglycerol: A new versatile biocompatible material. Rev. Molecular Biotechnol. 2002, 90, 257-267.  doi: 10.1016/S1389-0352(01)00063-0

    2. [2]

      Kainthan, R. K.; Janzen, J.; Levin, E.; Devine, D. V.; Brooks, D. E. Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 2006, 7, 703-709.  doi: 10.1021/bm0504882

    3. [3]

      Thomas, A.; Müller, S. S.; Frey, H. Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Biomacromolecules 2014, 15, 1935-1954.  doi: 10.1021/bm5002608

    4. [4]

      Weinhart, M.; Grunwald, I.; Wyszogrodzka, M.; Gaetjen, L.; Hartwig, A.; Haag, R. Linear poly(methyl glycerol) and linear polyglycerol as potent protein and cell resistant alternatives to poly(ethylene glycol). Chem. Asian J. 2010, 5, 1992-2000.  doi: 10.1002/asia.201000127

    5. [5]

      Gosecki, M.; Gadzinowski, M.; Gosecka, M.; Basinska, T.; Slomkowski, S. Polyglycidol, its derivatives, and polyglycidol-containing copolymers—Synthesis and medical applications. Polymers 2016, 8, 227.  doi: 10.3390/polym8060227

    6. [6]

      Calderón, M.; Quadir, M. A.; Sharma, S. K.; Haag, R. Dendritic polyglycerols for biomedical applications. Adv. Mater. 2010, 22, 190-218.  doi: 10.1002/adma.v22:2

    7. [7]

      Carlotti, S.; Labbé, A.; Rejsek, V.; Doutaz, S.; Gervais, M.; Deffieux, A. Living/controlled anionic polymerization and copolymerization of epichlorohydrin with tetraoctylammonium bromide-triisobutylaluminum initiating systems. Macromolecules 2008, 41, 7058-7062.  doi: 10.1021/ma801422c

    8. [8]

      Biedron, T.; Kubisa, P.; Penczek, S. Polyepichlorohydrin diols free of cyclics: Synthesis and characterization. J. Polym. Sci., Part A: Polym. Chem. 1991, 29, 619-628.

    9. [9]

      Vandenberg, E. J. Organometallic catalysts for polymerizing monosubstituted epoxides. J. Polym. Sci. 1960, 47, 486-489.  doi: 10.1002/pol.1960.1204714947

    10. [10]

      Xie, H. Q.; Guo, J. S.; Yu, G. Q.; Zu, J. Ring-opening polymerization of epichlorohydrin and its copolymerization with other alkylene oxides by quaternary catalyst system. J. Appl. Polym. Sci. 2001, 80, 2446-2454.  doi: 10.1002/(ISSN)1097-4628

    11. [11]

      Wu, J.; Shen, Z. Rare earth coordination catalysts for the polymerization of alkylene oxides I. Polymerization of epichlorohydrin. Polym. J. 1990, 22, 326-330.  doi: 10.1295/polymj.22.326

    12. [12]

      Hsieh, H. L. Polymerization of alkylene oxides with trialkylaluminum, metal acetylacetonates, and water. J. Appl. Polym. Sci. 1971, 15, 2425-2438.  doi: 10.1002/app.1971.070151009

    13. [13]

      Kuntz, I.; Kroll, W. R. Polymerization of epoxides with dialkylaluminum acetylacetonate catalyst systems. J. Polym. Sci., Part A: Polym. Chem. 1970, 8, 1601-1621.  doi: 10.1002/pol.1970.150080701

    14. [14]

      Yagci, Y.; Serhatli, I. E.; Kubisa, P.; Biedron, T. Synthesis of block copolymers by combination of an activated monomer and free radical polymerization mechanism. Macromolecules 1993, 26, 2397-2399.  doi: 10.1021/ma00062a001

    15. [15]

      Xie, H. Q.; Pan, S. B.; Guo, J. S. Ring-opening copolymerization of epoxy-terminated polystyrene macromer with epichlorohydrin and study on properties of the copolymers. Eur. Polym. J. 2003, 39, 715-724.  doi: 10.1016/S0014-3057(02)00277-X

    16. [16]

      Royappa, A. T. On the copolymerization of epichlorohydrin and glycidol. J. Appl. Polym. Sci. 1997, 65, 1897-1904.  doi: 10.1002/(ISSN)1097-4628

    17. [17]

      Majid, M. A.; George, M. H.; Barrie, J. A. Living anionic synthesis and characterization of poly(epichlorohydrin-g-styrene) copolymers. Polymer 1981, 22, 1104-1111.  doi: 10.1016/0032-3861(81)90300-1

    18. [18]

      Kohjiya, S.; Horiuchi, T.; Miura, K.; Kitagawa, M.; Sakashita, T.; Matoba, Y.; Ikeda, Y. Polymer solid electrolyte from amorphous poly[epichlorohydrin-co-(ethylene oxide)]/lithium perchlorate complex. Polym. Int. 2000, 49, 197-202.  doi: 10.1002/(ISSN)1097-0126

    19. [19]

      Kuntz, I.; Cozewith, C.; Oakley, H. T.; Via, G.; White, H. T.; Wilchinsky, Z. W. Epoxide copolymerization with the dialkylaluminum acetylacetonate-dialkylzinc-water catalyst system. Macromolecules 1971, 4, 4-10.  doi: 10.1021/ma60019a002

    20. [20]

      Gervais, M.; Brocas, A. L.; Cendejas, G.; Deffieux, A.; Carlotti, S. Synthesis of linear high molar mass glycidol-based polymers by monomer-activated anionic polymerization. Macromolecules 2010, 43, 1778-1784.  doi: 10.1021/ma902286a

    21. [21]

      Gervais, M.; Brocas, A.-L.; Cendejas, G.; Deffieux, A.; Carlotti, S. Linear high molar mass polyglycidol and its direct α-azido functionalization. Macromol. Symp. 2011, 308, 101-111.  doi: 10.1002/masy.v308.1

    22. [22]

      Billouard, C.; Carlotti, S.; Desbois, P.; Deffieux, A. " Controlled” high-speed anionic polymerization of propylene oxide initiated by alkali metal alkoxide/trialkylaluminum systems. Macromolecules 2004, 37, 4038-4043.  doi: 10.1021/ma035768t

    23. [23]

      Labbé, A.; Carlotti, S.; Billouard, C.; Desbois, P.; Deffieux, A. Controlled high-speed anionic polymerization of propylene oxide initiated by onium salts in the presence of triisobutylaluminum. Macromolecules 2007, 40, 7842-7847.  doi: 10.1021/ma070288d

    24. [24]

      Rejsek, V.; Sauvanier, D.; Billouard, C.; Desbois, P.; Deffieux, A.; Carlotti, S. Controlled anionic homo- and copolymerization of ethylene oxide and propylene oxide by monomer activation. Macromolecules 2007, 40, 6510-6514.  doi: 10.1021/ma070450c

    25. [25]

      Müller, S. S.; Moers, C.; Frey, H. A challenging comonomer pair: Copolymerization of ethylene oxide and glycidyl methyl ether to thermoresponsive polyethers. Macromolecules 2014, 47, 5492-5500.  doi: 10.1021/ma501280k

    26. [26]

      Heinen, S.; Rackow, S.; Schäfer, A.; Weinhart, M. A perfect match: fast and truly random copolymerization of glycidyl ether monomers to thermoresponsive copolymers. Macromolecules 2017, 50, 44-53.  doi: 10.1021/acs.macromol.6b01904

    27. [27]

      Gervais, M.; Labbé, A.; Carlotti, S.; Deffieux, A. Direct synthesis of α-azido,ω-hydroxypolyethers by monomer-activated anionic polymerization. Macromolecules 2009, 42, 2395-2400.  doi: 10.1021/ma802063s

    28. [28]

      Rodriguez, C. G.; Ferrier, R. C.; Helenic, A.; Lynd, N. A. Ring-opening polymerization of epoxides: facile pathway to functional polyethers via a versatile organoaluminum Initiator. Macromolecules 2017, 50, 3121-3130.  doi: 10.1021/acs.macromol.7b00196

    29. [29]

      Lundberg, P.; Lee, B. F.; van den Berg, S. A.; Pressly, E. D.; Lee, A.; Hawker, C. J.; Lynd, N. A. Poly(ethylene oxide)-co-(methylene ethylene oxide): A hydrolytically-degradable poly (ethylene oxide) platform. ACS Macro Lett. 2012, 1, 1240-1243.  doi: 10.1021/mz300477t

    30. [30]

      Meyer, J.; Keul, H.; Möller, M. Poly (glycidyl amine) and copolymers with glycidol and glycidyl amine repeating units: Synthesis and characterization. Macromolecules 2011, 44, 4082-4091.  doi: 10.1021/ma200757v

    31. [31]

      Brocas, A. L.; Cendejas, G.; Caillol, S.; Deffieux, A.; Carlotti, S. Controlled synthesis of polyepichlorohydrin with pendant cyclic carbonate functions for isocyanate-free polyurethane networks. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 2677-2684.  doi: 10.1002/pola.24699

    32. [32]

      Hu, H.; Yuan, W.; Lu, L.; Zhao, H.; Jia, Z.; Baker, G. L. Low glass transition temperature polymer electrolyte prepared from ionic liquid grafted polyethylene oxide. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2104-2110.  doi: 10.1002/pola.v52.15

    33. [33]

      Deng, M; Guo, F.; Liao, D.; Hou, Z.; Li, Y. Aluminium-catalyzed terpolymerization of furfuryl glycidyl ether with epichlorohydrin and ethylene oxide: synthesis of thermoreversible polyepichlorohydrin elastomers with furan/maleimide covalent crosslinks. Polym Chem. 2018, 9, 98-107.

    34. [34]

      Deng, M; Guo, F.; Li, Y.; Hou, Z. Synthesis of alkynyl-functionalized linear and star polyethers by aluminium-catalyzed copolymerization of glycidyl 3-butynyl ether with epichlorohydrin and ethylene oxide. Polym Chem. 2019, 10, 1110-1118.

    35. [35]

      Chipara, M. I.; Barb, D.; Notingher, P. V.; Georgescu, L.; Sarbu, T. Spin probe investigation of molecular motions in polyepichlorohydrin: 1. Polymer 1996, 37, 707-712.  doi: 10.1016/0032-3861(96)83160-0

    36. [36]

      Mandelkern, L. The Crystallization of flexible polymer molecules. Chem. Rev. 1956, 56, 903-958.  doi: 10.1021/cr50011a001

    37. [37]

      Herzberger, J.; Leibig, D.; Liermann, J. C.; Frey, H. Conventional oxyanionic versus monomer-activated anionic copolymerization of ethylene oxide with glycidyl ethers: Striking differences in reactivity ratios. ACS Macro Lett. 2016, 5, 1206-1211.  doi: 10.1021/acsmacrolett.6b00701

    38. [38]

      Blankenburg, J.; Wagner, M.; Frey, H. Well-defined multi-amino-functional and stimuli-responsive poly (propylene oxide) by crown ether assisted anionic ring-opening polymerization. Macromolecules 2017, 50, 8885-8893.  doi: 10.1021/acs.macromol.7b01324

    39. [39]

      Obermeier, B.; Wurm, F.; Mangold, C.; Frey, H. Multifunctional poly(ethylene glycol) s. Angew. Chem. Int. Ed. 2011, 50, 7988-7997.  doi: 10.1002/anie.v50.35

    40. [40]

      Clayden, J.; Greeves, N.; Warren, S. G. Organic chemistry, 2. ed.; Oxford Univ. Press, Oxford, 2012.

    41. [41]

      Tang, T.; Fan, X.; Jin, Y.; Wang, G. Synthesis and characterization of graft copolymers with poly(epichlorohydrin-co-ethylene oxide) as backbone by combination of ring-opening polymerization with living anionic polymerization. Polymer 2014, 55, 3680-3687.  doi: 10.1016/j.polymer.2014.05.066

  • 加载中
    1. [1]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    4. [4]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    5. [5]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    6. [6]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    7. [7]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    8. [8]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    9. [9]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    10. [10]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    11. [11]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    12. [12]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    13. [13]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    14. [14]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

    15. [15]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    16. [16]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    17. [17]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    18. [18]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    19. [19]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    20. [20]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

Metrics
  • PDF Downloads(0)
  • Abstract views(722)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return