Citation: Li-Jun Wang, Kai-Xiang Yang, Qiang Zhou, Hai-Yang Yang, Jia-Qing He, Xing-Yuan Zhang. Rhodamine Mechanophore Functionalized Mechanochromic Double Network Hydrogels with High Sensitivity to Stress[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 24-36. doi: 10.1007/s10118-019-2293-1 shu

Rhodamine Mechanophore Functionalized Mechanochromic Double Network Hydrogels with High Sensitivity to Stress

  • Corresponding author: Hai-Yang Yang, yhy@ustc.edu.cn Xing-Yuan Zhang, zxym@ustc.edu.cn
  • Received Date: 26 April 2019
    Revised Date: 10 May 2019
    Available Online: 24 July 2019

  • Mechanochromic hydrogels, a new class of stimuli-responsive soft materials, have potential applications in a number of fields such as damage reporting and stress/strain sensing. We prepared a novel mechanochromic hydrogel using a strategy that has been developed to prepare dual-network (DN) hydrogels. A hydrophobic rhodamine derivative (Rh mechanophore) was covalently incorporated into a first network as a cross-linker. This first network embedded with Rh mechanophore within the DN hydrogel was pre-stretched. This guaranteed that the stress could be transferred extensively to the Rh-crosslinked first network once the hydrogel was under an applied force. Interestingly, we found that the threshold stress required to activate the mechanochromism of the hydrogel was less than 200 kPa, and much less than those in previous reports. Moreover, because of the excellent sensitivity of the hydrogel to stress, the DN hydrogel exhibited reversible freezing-induced mechanochromism. Benefiting from the sensitivity of Rh mechanophore to both pH and force, the DN hydrogel showed pH-regulated mechanochromic behavior. Our experimental results indicate that the preparation strategy we used introduces sensitive mechanochromism into the hydrogel and preserves the advantageous mechanical properties of the DN hydrogel. These results will be beneficial to the design and preparation of mechanochromic hydrogels with high stress sensitivity, and foster their practical applications in a number of fields such as damage reporting and stress/strain sensing.
  • 加载中
    1. [1]

      Raphael, M. O.; Kinam, P.; Teruo, O. In Biomedical applications of hydrogels handbook. Springer, New York, NY, 2010, pp. 19−43.

    2. [2]

      Ahn, S. K.; Kasi, R. M.; Kim, S. C.; Sharma, N.; Zhou, Y. X. Stimuli-responsive polymer gels. Soft Matter 2008, 4, 1151−1157.  doi: 10.1039/b714376a

    3. [3]

      Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R 2015, 93, 1−49.  doi: 10.1016/j.mser.2015.04.001

    4. [4]

      Ryu, J. H.; Lee, Y.; Kong, W. H.; Kim, T. G.; Park, T. G.; Lee, H. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules 2011, 12, 2653−2659.  doi: 10.1021/bm200464x

    5. [5]

      Dai, H. J.; Chen, Q.; Qin, H. L.; Guan, Y.; Shen, D. Y.; Hua, Y. Q.; Tang, Y. L.; Xu, J. A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 2006, 39, 6584−6589.  doi: 10.1021/ma060486p

    6. [6]

      Tomatsu, I.; Peng, K.; Kros, A. Photoresponsive hydrogels for biomedical applications. Adv. Drug. Deliver. Rev. 2011, 63, 1257−1266.  doi: 10.1016/j.addr.2011.06.009

    7. [7]

      Yang, Y. Q.; Guan, L.; Gao, G. H. Low-cost, rapidly responsive, controllable, and reversible photochromic hydrogel for display and storage. ACS Appl. Mater. Interfaces 2018, 10, 13975−13984.  doi: 10.1021/acsami.8b00235

    8. [8]

      Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. 2011, 108, 2651−2655.  doi: 10.1073/pnas.1015862108

    9. [9]

      Milani, A. H.; Fielding, L. A.; Greensmith, P.; Saunders, B. R.; Adlam, D. J.; Freemont, A. J.; Hoyland, J. A.; Hodson, N. W.; Elsawy, M. A.; Miller, A. F.; Ratcliffe, L. P. D.; Mykhaylyk, O. O.; Armes, S. P. Anisotropic pH-responsive hydrogels containing soft or hard rod-like particles assembled using low shear. Chem. Mater. 2017, 29, 3100−3110.  doi: 10.1021/acs.chemmater.7b00110

    10. [10]

      Xiang, T.; Lu, T.; Zhao, W. F.; Zhao, C. S. Ionic-strength responsive zwitterionic copolymer hydrogels with tunable swelling and adsorption behaviors. Langmuir 2019, 35, 1146−1155.  doi: 10.1021/acs.langmuir.8b01719

    11. [11]

      Xiang, T.; Lu, T.; Zhao, W. F.; Zhao, C. S. Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties. New J. Chem. 2018, 42, 5323−5333.  doi: 10.1039/C8NJ00039E

    12. [12]

      Ilg, P. Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter 2013, 9, 3465−3468.  doi: 10.1039/c3sm27809c

    13. [13]

      Liu, Q.; Li, H.; Lam, K. Y. Optimization of deformable magnetic-sensitive hydrogel-based targeting system in suspension fluid for site-specific drug delivery. Mol. Pharm. 2018, 15, 4632−4642.  doi: 10.1021/acs.molpharmaceut.8b00626

    14. [14]

      Mo, A. G.; Wang, Y. P.; Liu, Y. K.; Zhou, W. F. Zhou, Q. Yasin, A.; Yang, H. Y. Enhanced viscosity of poly(acrylamide) solution in the presence of chromium citrate triggered by release of CO2. Chinese J. Chem. Phys. 2018, 31, 117−122.  doi: 10.1063/1674-0068/31/cjcp1706128

    15. [15]

      Park, J.; Pramanick, S.; Park, D.; Yeo, J.; Lee, J.; Lee, H.; Kim, W. J. Therapeutic-gas-responsive hydrogel. Adv. Mater. 2017, 29, 1702859.  doi: 10.1002/adma.201702859

    16. [16]

      Huebsch, N.; Kearney, C. J.; Zhao, X.; Kim, J.; Cezar, C. A.; Suo, Z.; Mooney, D. J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. 2014, 111, 9762−9767.  doi: 10.1073/pnas.1405469111

    17. [17]

      Weng, G. S.; Thanneeru, S.; He, J. Dynamic coordination of Eu-iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv. Mater. 2018, 30, 1706526.  doi: 10.1002/adma.201706526

    18. [18]

      Chan, E. P.; Walish, J. J.; Urbas, A. M.; Thomas, E. L. Mechanochromic photonic gels. Adv. Mater. 2013, 25, 3934−3947.  doi: 10.1002/adma.v25.29

    19. [19]

      Yue, Y. F.; Kurokawa, T.; Haque, M. A.; Nakajima, T.; Nonoyama, T.; Li, X. F.; Kajiwara, I.; Gong, J. P. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat. Commun. 2014, 5, 4659.  doi: 10.1038/ncomms5659

    20. [20]

      Wang, X. Q.; Wang, C. F.; Zhou, Z. F.; Chen, S. Robust mechanochromic elastic one-dimensional photonic hydrogels for touch sensing and flexible displays. Adv. Optic. Mater. 2014, 2, 652−662.  doi: 10.1002/adom.201300538

    21. [21]

      Haque, M. A.; Kamita, G.; Kurokawa, T.; Tsujii, K.; Gong, J. P. Unidirectional alignment of lamellar bilayer in hydrogel: one-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color. Adv. Mater. 2010, 22, 5110−5114.  doi: 10.1002/adma.201002509

    22. [22]

      Cellini, F.; Block, L.; Li, J.; Khapli, S.; Peterson, S. D.; Porfiri, M. Mechanochromic response of pyrene functionalized nanocomposite hydrogels. Sens. Actuators B 2016, 234, 510−520.  doi: 10.1016/j.snb.2016.04.149

    23. [23]

      Davis, D. A.; Hamilton, A.; Yang, J.; Cremar, L. D.; van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martinez, T. J.; White, S. R.; Moore, J. S.; Sottos, N. R. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 2009, 459, 68−72.  doi: 10.1038/nature07970

    24. [24]

      Wang, Z.; Ma, Z.; Wang, Y.; Xu, Z.; Luo, Y.; Wei, Y.; Jia, X. A novel mechanochromic and photochromic polymer film: when rhodamine joins polyurethane. Adv. Mater. 2015, 27, 6469−6474.  doi: 10.1002/adma.201503424

    25. [25]

      Imato, K.; Kanehara, T.; Ohishi, T.; Nishihara, M.; Yajima, H.; Ito, M.; Takahara, A.; Otsuka, H. Mechanochromic dynamic covalent elastomers: quantitative stress evaluation and autonomous recovery. ACS Macro Lett. 2015, 4, 1307−1311.  doi: 10.1021/acsmacrolett.5b00717

    26. [26]

      Verstraeten, F.; Gostl, R.; Sijbesma, R. P. Stress-induced colouration and crosslinking of polymeric materials by mechanochemical formation of triphenylimidazolyl radicals. Chem. Commun. 2016, 52, 8608−8611.  doi: 10.1039/C6CC04312G

    27. [27]

      Chen, H.; Yang, F.; Chen, Q.; Zheng, J. A novel design of multi-mechanoresponsive and mechanically strong hydrogels. Adv. Mater. 2017, 29, 1606900.  doi: 10.1002/adma.201606900

    28. [28]

      Wang, L.; Zhou, W.; Tang, Q.; Yang, H.; Zhou, Q.; Zhang, X. Rhodamine-functionalized mechanochromic and mechanofluorescent hydrogels with enhanced mechanoresponsive sensitivity. Polymers 2018, 10, 994.  doi: 10.3390/polym10090994

    29. [29]

      Wang, T.; Zhang, N.; Dai, J.; Li, Z.; Bai, W.; Bai, R. Novel reversible mechanochromic elastomer with high sensitivity: bond scission and bending-induced multicolor switching. ACS Appl. Mater. Interfaces 2017, 9, 11874−11881.  doi: 10.1021/acsami.7b00176

    30. [30]

      Woodcock, J. W.; Beams, R.; Davis, C. S.; Chen, N.; Stranick, S. J.; Shah, D. U.; Vollrath, F.; Gilman, J. W. Observation of interfacial damage in a silk-epoxy composite, using a simple mechanoresponsive fluorescent probe. Adv. Mater. Interfaces 2017, 4, 1601018.  doi: 10.1002/admi.201601018

    31. [31]

      Ducrot, E.; Chen, Y.; Bulters, M.; Sijbesma, R. P.; Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 2014, 344, 186−189.  doi: 10.1126/science.1248494

    32. [32]

      Nakajima, T.; Sato, H.; Zhao, Y.; Kawahara, S.; Kurokawa, T.; Sugahara, K.; Gong, J. P. A universal molecular stent method to toughen any hydrogels based on double network concept. Adv. Funct. Mater. 2012, 22, 4426−4432.  doi: 10.1002/adfm.v22.21

    33. [33]

      Gong, J. P. Why are double network hydrogels so tough? Soft Matter 2010, 6, 2583−2590.  doi: 10.1039/b924290b

    34. [34]

      Li, Z.; Wu, S.; Han, J.; Han, S. Imaging of intracellular acidic compartments with a sensitive rhodamine based fluorogenic pH sensor. Analyst 2011, 136, 3698−3706.  doi: 10.1039/c1an15108h

    35. [35]

      Zhang, W.; Tang, B.; Liu, X.; Liu, Y.; Xu, K.; Ma, J.; Tong, L.; Yang, G. A highly sensitive acidic pH fluorescent probe and its application to HepG2 cells. Analyst 2009, 134, 367−371.  doi: 10.1039/B807581F

    36. [36]

      Matsuda, T.; Nakajima, T.; Fukuda, Y.; Hong, W.; Sakai, T.; Kurokawa, T.; Chung, U. I.; Gong, J. P. Yielding criteria of double network hydrogels. Macromolecules 2016, 49, 1865−1872.  doi: 10.1021/acs.macromol.5b02592

    37. [37]

      Liu, X. X.; Tong, Z.; Hu, O. Swelling equilibria of hydrogels with sulfonate groups in water and in aqueous salt-solutions. Macromolecules 1995, 28, 3813−3817.  doi: 10.1021/ma00115a010

    38. [38]

      Beiermann, B. A.; Kramer, S. L. B.; May, P. A.; Moore, J. S.; White, S. R.; Sottos, N. R. The effect of polymer chain alignment and relaxation on force-induced chemical reactions in an elastomer. Adv. Funct. Mater. 2014, 24, 1529−1537.  doi: 10.1002/adfm.v24.11

    39. [39]

      Kato, S.; Ishizuki, K.; Aoki, D.; Goseki, R.; Otsuka, H. Freezing-induced mechanoluminescence of polymer gels. ACS Macro Lett. 2018, 7, 1087−1091.  doi: 10.1021/acsmacrolett.8b00521

    40. [40]

      Imato, K.; Irie, A.; Kosuge, T.; Ohishi, T.; Nishihara, M.; Takahara, A.; Otsuka, H. Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew. Chem. Int. Ed. 2015, 54, 6168−6172.  doi: 10.1002/anie.201412413

    41. [41]

      Li, M.; Zhang, Q.; Zhu, S. Photo-inactive divinyl spiropyran mechanophore cross-linker for real-time stress sensing. Polymer 2016, 99, 521−528.  doi: 10.1016/j.polymer.2016.07.057

  • 加载中
    1. [1]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    2. [2]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    3. [3]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    4. [4]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    5. [5]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    6. [6]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    7. [7]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    8. [8]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    9. [9]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    10. [10]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    11. [11]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    12. [12]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    13. [13]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    14. [14]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    15. [15]

      Shangda QuYiming YuanXu YeWentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030

    16. [16]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    17. [17]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    18. [18]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    19. [19]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    20. [20]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

Metrics
  • PDF Downloads(0)
  • Abstract views(807)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return