Citation: Ling Guo, Yan-Ping Zhang, Hong-Liang Mu, Li Pan, Kai-Ti Wang, Huan Gao, Bin Wang, Zhe Ma, Yue-Sheng Li. Efficient Addition Polymerization of Norbornene with Polar Norbornene Derivatives by Neutral Nickel(II) Catalysts[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1215-1223. doi: 10.1007/s10118-019-2292-2 shu

Efficient Addition Polymerization of Norbornene with Polar Norbornene Derivatives by Neutral Nickel(II) Catalysts

  • Corresponding author: Li Pan, lilypan@tju.edu.cn
  • Received Date: 18 April 2019
    Revised Date: 7 May 2019
    Available Online: 27 June 2019

  • A series of nickel complexes { 4a : [(2,6-iPr2C6H3)N=CHC16H12O]Ni(Me)(Py), 4b : [(2,6-iPr2C6H2OCH3)N=CHC16H12O]Ni(Me)(Py), 4c : [(2,6-iPr2C6H2Cl)N=CHC16H12O]Ni(Me)(Py), and 4d : [(2,6-iPr2C6H2CF3)N=CHC16H12O]Ni(Me)(Py)} based on β-ketiminato ligands bearing various electron-donating or electron-withdrawing substituents on the para-position of the aniline group were synthesized and unambiguously characterized. The X-ray crystallographic analysis showed that complexes 4b and 4d adopted a near-square-planar geometry, and the anilines bearing a para-OMe or ―CF3 group were found to situate on the axial position of the metal center. All complexes exhibited high activities up to 1.25 × 107–1.35 × 107 gPNB·molNi–1·h–1 toward norbornene (NBE) addition polymerization (conversion > 91.2% in 2 min) under low loading of B(C6F5)3 (B/Ni = 3) at 30 °C, affording polymers with high molecular weight up to 2.54 × 106–3.18 × 106. Different levels of decrease in catalytic activities could be observed for all catalysts as the reaction temperature increased; 4d bearing a strong electron-withdrawing ―CF3 group showed the highest activity at 70 °C, while others exhibited notable decrease in catalytic activity with the raise in reaction temperature. Complexes 4a4d showed remarkable tolerance to polar groups and could efficiently promote the copolymerization of NBE with its polar derivatives, including NBE bearing small acetate and hydroxyl group, as well as bulky oligomers, yielding copolymers with high functional NBE incorporations. Novel NBE copolymers with high functional comonomer incorporations and improved solubility were obtained in high yields.
  • 加载中
    1. [1]

      Pierre, F.; Commarieu, B.; Tavares, A. C.; Claverie, J. High Tg sulfonated insertion polynorbornene ionomers prepared by catalytic insertion polymerization. Polymer 2016, 86, 91-97.  doi: 10.1016/j.polymer.2016.01.047

    2. [2]

      Mandal, M.; Huang, G.; Kohl, P. A. Anionic multiblock copolymer membrane based on vinyl addition polymerization of norbornenes: Applications in anion-exchange membrane fuel cells. J. Membr. Sci. 2019, 570-571, 394-402.

    3. [3]

      Chapala, P. P.; Bermeshev, M. V.; Starannikova, L. E.; Belov, N. A.; Ryzhikh, V. E.; Shantarovich, V. P.; Lakhtin, V. G.; Gavrilova, N. N.; Yampolskii, Y. P.; Finkelshtein, E. S. A novel, highly gas-permeable polymer representing a new class of silicon-containing polynorbornens as efficient membrane materials. Macromolecules 2015, 48 (22), 8055-8061.  doi: 10.1021/acs.macromol.5b02087

    4. [4]

      Maroon, C. R.; Townsend, J.; Gmernicki, K. R.; Harrigan, D. J.; Sundell, B. J.; Lawrence, J. A.; Mahurin, S. M.; Vogiatzis, K. D.; Long, B. K. Elimination of CO2/N2 langmuir sorption and promotion of " N2-phobicity” within high-Tg glassy membranes. Macromolecules 2019, 52 (4), 1589-1600.  doi: 10.1021/acs.macromol.8b02497

    5. [5]

      Kang, B. G.; Kim, D. G.; Register, R. A. Vinyl addition copolymers of norbornylnorbornene and hydroxyhexafluoroisopropylnorbornene for efficient recovery of n-butanol from dilute aqueous solution via pervaporation. Macromolecules 2018, 51 (10), 3702-3710.  doi: 10.1021/acs.macromol.8b00470

    6. [6]

      Kim, D. G.; Takigawa, T.; Kashino, T.; Burtovyy, O.; Bell, A.; Register, R. A. Hydroxyhexafluoroisopropylnorbornene block and random copolymers via vinyl addition polymerization and their application as biobutanol pervaporation membranes. Chem. Mater. 2015, 27 (19), 6791-6801.  doi: 10.1021/acs.chemmater.5b03030

    7. [7]

      Park, J. H.; Koh, T. W.; Chung, J.; Park, S. H.; Eo, M.; Do, Y.; Yoo, S.; Lee, M. H. Polynorbornene copolymer with side-chain iridium(III) emitters and carbazole hosts: a single emissive layer material for highly efficient electrophosphorescent devices. Macromolecules 2013, 46 (3), 674-682.  doi: 10.1021/ma302342p

    8. [8]

      Ha Park, J.; Koh, T. W.; Do, Y.; Hyung Lee, M.; Yoo, S. Soluble polynorbornenes with pendant carbazole derivatives as host materials for highly efficient blue phosphorescent organic light-emitting diodes. J. Polym. Sci., Part A: Polym. Chem. 2012, 50 (12), 2356-2365.  doi: 10.1002/pola.26005

    9. [9]

      Bermeshev, M. V.; Chapala, P. P. Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties. Prog. Polym. Sci. 2018, 84, 1-46.  doi: 10.1016/j.progpolymsci.2018.06.003

    10. [10]

      Blank, F.; Janiak, C. Metal catalysts for the vinyl/addition polymerization of norbornene. Coord. Chem. Rev. 2009, 253 (7-8), 827-861.  doi: 10.1016/j.ccr.2008.05.010

    11. [11]

      Chen, L.; Zhong, Z.; Chen, C.; He, X.; Chen, Y. N,O-chelating bidentate Ni (II) and Pd (II) complexes for copolymerization of norbornene and norbornene ester. J. Organomet. Chem. 2014, 752, 100-108.  doi: 10.1016/j.jorganchem.2013.11.031

    12. [12]

      Kim, D. G.; Bell, A.; Register, R. A. Living vinyl addition polymerization of substituted norbornenes by a t-Bu3P-ligated methylpalladium complex. ACS Macro Lett. 2015, 4 (3), 327-330.  doi: 10.1021/acsmacrolett.5b00079

    13. [13]

      Eo, M.; Lee, S.; Park, M. H.; Lee, M. H.; Yoo, S.; Do, Y. Vinyl-type polynorbornenes with pendant PCBM: a novel acceptor for organic solar cells. Macromol. Rapid Commun. 2012, 33 (13), 1119-1125.  doi: 10.1002/marc.201200023

    14. [14]

      He, F.; Chen, Y.; He, X.; Chen, M.; Zhou, W.; Wu, Q. Copolymerization of norbornene and 5-norbornene-2-yl acetate using novel bis(β-ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3 catalytic system. J. Polym. Sci., Part A: Polym. Chem. 2009, 47 (16), 3990-4000.  doi: 10.1002/pola.v47:16

    15. [15]

      He, X.; Deng, Y.; Jiang, X.; Wang, Z.; Yang, Y.; Han, Z.; Chen, D. Copolymerization of norbornene and butyl methacrylate at elevated temperatures by a single centre nickel catalyst bearing bulky bis(α-diimine) ligand with strong electron-withdrawing groups. Polym. Chem. 2017, 8 (15), 2390-2396.  doi: 10.1039/C7PY00081B

    16. [16]

      He, X.; Yang, Y.; Wang, S.; Han, Z.; Tu, G.; Zhang, F.; Huang, S.; Wang, Z.; Chen, D. Synthesis of bis-(benzocyclohexan-ketoimino) Ni(ii) with different electron groups and their catalytic copolymerization of norbornene and polar norbornene. RSC Adv. 2017, 7 (77), 48745-48753.  doi: 10.1039/C7RA09944D

    17. [17]

      Tian, J.; He, X.; Liu, J.; Deng, X.; Chen, D. Synthesis of well-defined C―C bridged Ni(II) complexes bearing β-ketoiminato-fluorene ligands by bifluorenyl in situ coupling and application for norbornene (co)polymerization. RSC Adv. 2015, 5 (76), 61851-61860.  doi: 10.1039/C5RA11630A

    18. [18]

      He, J.; Liu, Z.; Du, G.; Fu, Y.; Zhang, S.; Li, X. Chiral palladium(II) and nickel(II) complexes c2-symmetrical tridentate bis(oxazoline) ligands: synthesis, characterization, and catalytic norbornene polymerization. Organometallics 2014, 33 (21), 6103-6112.  doi: 10.1021/om5007616

    19. [19]

      Chen, C. Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat. Rev. Chem. 2018, 2 (5), 6-14.  doi: 10.1038/s41570-018-0003-0

    20. [20]

      Tan, C.; Pang, W. M.; Chen, C. L. A phenol-containing α-diimine ligand for nickel- and palladium- catalyzed ethylene polymerization. Chinese J. Polym. Sci. 2019, DOI: 10.1007/s10118-019-2232-1.  doi: 10.1007/s10118-019-2232-1

    21. [21]

      Wang, F. Z.; Tian, S. S.; Li, R. P.; Li, W. M.; Chen, C. L. Ligand steric effects on naphthyl-α-diimine nickel catalyzed α-olefin polymerization. Chinese J. Polym. Sci. 2017, 36 (2), 157-162.

    22. [22]

      Liao, H.; Gao, J.; Zhong, L.; Gao, H. Y.; Wu, Q. Regioselective polymerizations of α-olefins with an α-diamine nickel catalyst. Chinese J. Polym. Sci. 2019, DOI: 10.1007/s10118-019-2227-y.  doi: 10.1007/s10118-019-2227-y

    23. [23]

      Zheng, T.; Liao, H.; Gao, J.; Zhong, L.; Gao, H.; Wu, Q. Synthesis and characterization of α-diamine palladium complexes and insight into hybridization effects of nitrogen donor atoms on norbornene (co)polymerizations. Polym. Chem. 2018, 9 (22), 3088-3097.  doi: 10.1039/C8PY00395E

    24. [24]

      Antonov, A. A.; Semikolenova, N. V.; Zakharov, V. A.; Zhang, W.; Wang, Y.; Sun, W. H.; Talsi, E. P.; Bryliakov, K. P. Vinyl polymerization of norbornene on nickel complexes with bis(imino)pyridine ligands containing electron-withdrawing groups. Organometallics 2012, 31 (3), 1143-1149.  doi: 10.1021/om201213v

    25. [25]

      Carlini, C.; Martinelli, M.; Galletti, A. M. R.; Sbrana, G. Vinyl polymerization of norbornene by bis(nitro-substituted-salicylaldiminate)nickel(II)/methylaluminoxane catalysts. J. Polym. Sci., Part A: Polym. Chem. 2006, 44 (4), 1514-1521.  doi: 10.1002/(ISSN)1099-0518

    26. [26]

      Zeng, Y.; Mahmood, Q.; Zhang, Q.; Liang, T.; Sun, W. H. Vinyl homo/copolymerization of norbornene and ethylene using sterically enhanced 1,2-bis(arylimino)acenaphthene-palladium precatalysts. J. Polym. Sci., Part A: Polym. Chem. 2018, 56 (8), 922-930.  doi: 10.1002/pola.v56.8

    27. [27]

      Zeng, Y.; Mahmood, Q.; Zhang, Q.; Liang, T.; Sun, W. H. Highly thermo-stable and electronically controlled palladium precatalysts for vinyl homo/co-polymerization of norbornene-ethylene. Eur. Polym. J. 2018, 103, 342-350.  doi: 10.1016/j.eurpolymj.2018.04.028

    28. [28]

      Zhang, Y.; Mu, H.; Li, Y.; Li, Y. Phosphine (oxide)-(thio) phenolate palladium complexes: Synthesis, characterization and (co)polymerization of norbornene. Appl. Organomet. Chem. 2018, 32 (2), e4013 DOI: 10.1002/aoc.4013.  doi: 10.1002/aoc.4013

    29. [29]

      Zhang, Y. P.; Li, W.; Li, B. X.; Mu, H. L.; Li, Y. S. Well-defined phosphino-phenolate neutral nickel(II) catalysts for efficient (co)polymerization of norbornene and ethylene. Dalton Trans. 2015, 44, 7382-7394.  doi: 10.1039/C5DT00074B

    30. [30]

      Song, D. P.; Wang, Y. X.; Mu, H. L.; Li, B. X.; Li, Y. S. Observations and mechanistic insights on unusual stability of neutral nickel complexes with a sterically crowded metal center. Organometallics 2011, 30 (5), 925-934.  doi: 10.1021/om100725h

    31. [31]

      Nguyen, P.; Corpuz, E.; Heidelbaugh, M. T.; Chow, K.; Garst, E. M. A convenient synthesis of 7-halo-1-indanones and 8-halo-1-tetralones. J. Org. Chem. 2003, 68, 10195-10198.  doi: 10.1021/jo035289s

    32. [32]

      Gelat, F.; Richard, V.; Berger, O.; Montchamp, J. L. Development of a new family of chiral auxiliaries. Org. Lett. 2015, 17 (8), 1819-1821.  doi: 10.1021/acs.orglett.5b00278

    33. [33]

      Elie, M.; Sguerra, F.; Di Meo, F.; Weber, M. D.; Marion, R.; Grimault, A.; Lohier, J. F.; Stallivieri, A.; Brosseau, A.; Pansu, R. B.; Renaud, J. L.; Linares, M.; Hamel, M.; Costa, R. D.; Gaillard, S. Designing NHC-copper(I) dipyridylamine complexes for blue light-emitting electrochemical cells. ACS Appl. Mater. Interfaces 2016, 8 (23), 14678-14691.  doi: 10.1021/acsami.6b04647

    34. [34]

      Hospital, A.; Gibard, C.; Gaulier, C.; Nauton, L.; Thery, V.; El-Ghozzi, M.; Avignant, D.; Cisnetti, F.; Gautier, A. Access to functionalised silver(I) and gold(I) N-heterocyclic carbenes by [2 + 3] dipolar cycloadditions. Dalton Trans. 2012, 41 (22), 6803-6812.  doi: 10.1039/c2dt30249g

    35. [35]

      Lane, T. K.; D'Souza, B. R.; Louie, J. Iron-catalyzed formation of 2-aminopyridines from diynes and cyanamides. J. Org. Chem. 2012, 77 (17), 7555-7563.  doi: 10.1021/jo3012418

    36. [36]

      Lane, T. K.; Nguyen, M. H.; D'Souza, B. R.; Spahn, N. A.; Louie, J. The iron-catalyzed construction of 2-aminopyrimidines from alkynenitriles and cyanamides. Chem. Commun. 2013, 49 (70), 7735-7737.  doi: 10.1039/c3cc44422h

    37. [37]

      Popeney, C.; Guan, Z. Ligand electronic effects on late transition metal polymerization catalysts. Organometallics 2005, 24, 1145-1155.  doi: 10.1021/om048988j

    38. [38]

      Dai, S.; Sui, X.; Chen, C. Highly robust palladium(II) a--diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed. 2015, 54 (34), 9948-9953.  doi: 10.1002/anie.201503708

    39. [39]

      Li, M.; Shu, X.; Cai, Z.; Eisen, M. S. Synthesis, structures, and norbornene polymerization behavior of neutral nickel(II) and palladium(II) complexes bearing aryloxide imidazolidin-2-imine ligands. Organometallics 2018, 37 (7), 1172-1180.  doi: 10.1021/acs.organomet.8b00059

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    3. [3]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    4. [4]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    5. [5]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    6. [6]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    7. [7]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    8. [8]

      Fei-Yan GaoYan WuLing YangZhong-Yi MaYi ChenXiao-Man MaoXu-Fei BianPei TangChong Li . Orally delivered berberine derivatives for dual therapy in diabetic complications with MRSA infections. Chinese Chemical Letters, 2025, 36(4): 109917-. doi: 10.1016/j.cclet.2024.109917

    9. [9]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    10. [10]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    11. [11]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    12. [12]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    13. [13]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    14. [14]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    15. [15]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    16. [16]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    17. [17]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    18. [18]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    19. [19]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    20. [20]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

Metrics
  • PDF Downloads(0)
  • Abstract views(750)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return