Citation: Yu Fu, Fan Wu, Jian-Hua Huang, Ying-Cai Chen, Meng-Bo Luo. Simulation Study on the Extension of Semi-flexible Polymer Chains in Cylindrical Channel[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1290-1297. doi: 10.1007/s10118-019-2291-3 shu

Simulation Study on the Extension of Semi-flexible Polymer Chains in Cylindrical Channel

  • Corresponding author: Meng-Bo Luo, 
  • Received Date: 13 March 2019
    Revised Date: 9 May 2019
    Available Online: 28 June 2019

  • The scaling relations among the mean end-to-end distance of polymer along the channel <R||>, the polymer length N, and the effective diameter of channel De were investigated for flexible and semi-flexible polymer chains confined in long cylindrical channels. For the flexible polymer chain, scaling relation <R||> ~ NDe–0.7 was found in the classic de Gennes regime at lp2/b < De < Rg with lp the persistence length, b the bond length, and Rg the radius of gyration of polymer. For the semi-flexible polymer, <R||> ~ NDe–1 in the transition regime lp < De < xlp (x > 1) and <R||> ~ De–0.7 in the classic de Gennes regime at larger De > xlp were observed. The simulation results revealed that the scaling relation in the transition regime was due to the rod-like behavior of the semi-flexible polymer in the small regime lp < De < xlp.
  • 加载中
    1. [1]

      Alberts, B.; Johnson, A.; Lewis. J.; Raff, M.; Roberts, K.; Walter, P. Molecular biology of the cell. 4th Edition, Garland Science, New York, 2002.

    2. [2]

      Singer, S. J. The structure and insertion of integral proteins in membranes. Annu. Rev. Cell Biol. 1990, 6, 247–296.  doi: 10.1146/annurev.cb.06.110190.001335

    3. [3]

      Schatz, G.; Dobberstein, B. Common principles of protein translocation across membranes. Science 1996, 271, 1519–1526.  doi: 10.1126/science.271.5255.1519

    4. [4]

      Odijk, T. Scaling theory of DNA confined in nanochannels and nanoslits. Phys. Rev. E 2008, 77, 060901.  doi: 10.1103/PhysRevE.77.060901

    5. [5]

      Chen, J. Z. Y. Free energy and extension of a wormlike chain in tube confinement. Macromolecules 2013, 46, 9837–9844.  doi: 10.1021/ma4020824

    6. [6]

      Reisner, W.; Morton, K. J.; Riehn, R.; Wang, Y. M.; Yu, Z.; Rosen, M.; Sturm, J. C.; Chou, S. Y.; Frey, E.; Austin, R. H. Statics and dynamics of single DNA molecules confined in nanochannels. Phys. Rev. Lett. 2005, 94, 196101.  doi: 10.1103/PhysRevLett.94.196101

    7. [7]

      Marciel, A. B.; Schroeder, C. M. New directions in single polymer dynamics. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 556–566.  doi: 10.1002/polb.23264

    8. [8]

      Wang, Y.; Tree, D. R.; Dorfman, K. D. Simulation of DNA extension in nanochannels. Macromolecules 2011, 44, 6594–6604.  doi: 10.1021/ma201277e

    9. [9]

      Tree, D. R.; Wang, Y.; Dorfman, K. D. Extension of DNA in a nanochannel as a rod-to-coil transition. Phys. Rev. Lett. 2013, 110, 208103.  doi: 10.1103/PhysRevLett.110.208103

    10. [10]

      Fu, C. L.; Sun, Z. Y.; An, L. J. The properties of a single polymer chain in solvent confined in a slit: a molecular dynamics simulation. Chinese J. Polym. Sci. 2013, 31, 388–398.  doi: 10.1007/s10118-013-1231-x

    11. [11]

      Dai, L.; van der Maarel, J.; Doyle, P. S. Extended de Gennes regime of DNA confined in a nanochannel. Macromolecules 2014, 47, 2445–2450.  doi: 10.1021/ma500326w

    12. [12]

      Hao, J. L.; Wang, Z.; Wang, Z.; Yin, Y. H.; Jiang, R.; Li, B. H. Simulation of asymmetric deblock copolymer films confined between two flat walls and upon solvent evaporation. Acta Polymerica Sinica (in Chinese) 2017, 11, 1841–1850.

    13. [13]

      Chen, Y. L.; Graham, M. D.; Pablo, J. J.; Randall, G. C.; Gupta, M.; Doyle, P. S. Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels. Phys. Rev. E 2004, 70, 060901.  doi: 10.1103/PhysRevE.70.060901

    14. [14]

      Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773.  doi: 10.1073/pnas.93.24.13770

    15. [15]

      Hsieh, C-C.; Balducci, A.; Doyle, P. S. An experimental study of DNA rotational relaxation time in nanoslits. Macromolecules 2007, 40, 5196–5205.  doi: 10.1021/ma070570k

    16. [16]

      Liu, L.; Yang, C.; Zhao, K.; Li, J.; Wu, H. C. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nature Commun. 2013, 4, 2989.  doi: 10.1038/ncomms3989

    17. [17]

      Yang, Y. B.; Sun, Z. Y.; An, L. J. Monte Carlo simulation study of channel confinement influence on polymer chain entanglement. Acta Polymerica Sinica (in Chinese) 2011, 5, 554–559.

    18. [18]

      Reisner, W.; Pedersen, J. N.; Austin, R. H. DNA confinement in nanochannels: physics and biological applications. Rep. Prog. Phys. 2012, 75, 106601.  doi: 10.1088/0034-4885/75/10/106601

    19. [19]

      Chen, J. Z. Y. Theory of wormlike polymer chains in confinement. Prog. Polym. Sci. 2016, 54-55, 2–46.

    20. [20]

      Milchev, A. Single-polymer dynamics under constraints: scaling theory and computer experiment. J. Phys. Condens. Matter 2011, 23, 103101.  doi: 10.1088/0953-8984/23/10/103101

    21. [21]

      Dai, L.; Renner, C. B.; Doyle, P. S. The polymer physics of single DNA confined in nanochannels. Adv. Colloid Interface Sci. 2016, 232, 80–100.  doi: 10.1016/j.cis.2015.12.002

    22. [22]

      Wang, Z. H.; Wang, J.; Lu, Y. Y. Static and dynamic properties of confined polymer chains. J. Func. Poly. 2018, 31, 1–15.

    23. [23]

      de Gennes, P. G. Scaling concepts in polymer physics. Cornell University Press, Ithaca, New York, 1979.

    24. [24]

      Brochard, F.; de Gennes, P. G. Dynamics of confined polymer chains. J. Chem. Phys. 1977, 67, 52–56.  doi: 10.1063/1.434540

    25. [25]

      de Gennes, P. G.; Pincus, P.; R. Velasco, M.; Brochard, F. Remarks on polyelectrolyte conformation. J. de Phys. 1976, 37, 1461–1473.  doi: 10.1051/jphys:0197600370120146100

    26. [26]

      Ha, B. Y.; Jung, Y. Polymers under confinement: single polymers, how they interact, and as model chromosomes. Soft Matter 2015, 11, 2333–2352.  doi: 10.1039/C4SM02734E

    27. [27]

      Li, B.; Madras, N.; Sokal, A. D. Critical exponents, hyperscaling and universal amplitude ratios for two- and three-dimensional self-avoiding walks. J. Stat. Phys. 1995, 80, 661–754.  doi: 10.1007/BF02178552

    28. [28]

      Arnold, A.; Bozorgui, B.; Frenkel, D.; Ha, B. Y.; Jun, S. Unexpected relaxation dynamics of a self-avoiding polymer in cylindrical confinement. J. Chem. Phys. 2007, 127, 164903.  doi: 10.1063/1.2799513

    29. [29]

      Dai, L.; Jones, J. J.; van der Marrel, J. R. C.; Doyle, P. S. A systematic study of DNA conformation in slitlike confinement. Soft Matter 2012, 8, 2972–2982.  doi: 10.1039/c2sm07322f

    30. [30]

      Cifra, P.; Benkova, Z.; Bleha, T. Chain extension of DNA confined in channels. J. Phys. Chem. B 2009, 113, 1843–1851.  doi: 10.1021/jp806126r

    31. [31]

      Cifra, P. Channel confinement of flexible and semiflexible macromolecules. J. Chem. Phys. 2009, 131, 224903.  doi: 10.1063/1.3271830

    32. [32]

      Huang, J. H.; Ma, Z. X.; Luo, M. B. Self-assembly of rod-coil deblock copolymers within a rod-selective slit: a dissipative particle dynamics simulation study. Langmuir 2014, 30, 6267–6273.  doi: 10.1021/la501023a

    33. [33]

      Zhang, X.; Bao, L.; Wu, Y. Y.; Zhu, X. L.; Tan, Z. J. Radial distribution function of semiflexible oligomers with stretching flexibility. J. Chem. Phys. 2017, 147, 054901.  doi: 10.1063/1.4991689

    34. [34]

      Hegde, G. A.; Chang, J. F.; Chen, Y. L.; Khare, R. Conformation and diffusion hehavior of ring polymers in solution: a comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations. J. Chem. Phys. 2011, 135, 184901.  doi: 10.1063/1.3656761

    35. [35]

      Jiang, Z.; Dou, W.; Sun, T.; Shen, Y.; Cao, D. Effects of chain flexibility on the conformational behavior of a single polymer chain. J. Polym. Res. 2015, 22, 236.  doi: 10.1007/s10965-015-0875-3

    36. [36]

      Schellman, J. A. Flexibility of DNA. Biopolymers 1974, 13, 217–226.  doi: 10.1002/(ISSN)1097-0282

    37. [37]

      Wang, F. H.; Wu, Y. Y.; Tan, Z. J. Salt contribution to the flexibility of single-stranded nucleic acid of finite length. Biopolymers 2013, 99, 370–381.  doi: 10.1002/bip.22189

    38. [38]

      Odijk, T. On the statistics and dynamics of confined or entangled stiff polymers. Macromolecules 1983, 16, 1340–1344.  doi: 10.1021/ma00242a015

    39. [39]

      Yang, Y.; Burkhardt, T. W.; Gompper, G. Free energy and extension of a semiflexible polymer in cylindrical confining geometries. Phys. Rev. E 2007, 76, 011804.

    40. [40]

      Chen, J. Z. Y. Self-avoiding wormlike chain confined in a cylindrical tube: scaling behavior. Phys. Rev. Lett. 2018, 121, 037801.  doi: 10.1103/PhysRevLett.121.037801

    41. [41]

      Dai, L.; Doyle, P. S. Comparisons of a polymer in confinement versus applied force. Macromolecules 2013, 46, 6336–6344.  doi: 10.1021/ma400674q

    42. [42]

      Li, A. B.; Yao, Y. G.; Xu, H. Stiffness and excluded volume effects on conformation and dynamics of polymers: a simulation study. Chinese J. Polym. Sci. 2012, 30, 350–358.  doi: 10.1007/s10118-012-1123-5

  • 加载中
    1. [1]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    2. [2]

      Nianqiang JiangYiqiang OuYanpeng ZhuDingyong ZhongJiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    5. [5]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    6. [6]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    7. [7]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    8. [8]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    9. [9]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    10. [10]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    11. [11]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    12. [12]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    13. [13]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    14. [14]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    15. [15]

      Lixian Cai Yingxiang Ye . A flexible-robust MOF for efficient purification of perfluoropropane. Chinese Journal of Structural Chemistry, 2024, 43(11): 100368-100368. doi: 10.1016/j.cjsc.2024.100368

    16. [16]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    17. [17]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    18. [18]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    19. [19]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    20. [20]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

Metrics
  • PDF Downloads(0)
  • Abstract views(701)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return