Citation: Dmitriy I. Shiman, Ivan A. Berezianko, Irina V. Vasilenko, Sergei V. Kostjuk. Cationic Polymerization of Isobutylene and C4 Mixed Feed Using Complexes of Lewis Acids with Ethers: A Comparative Study[J]. Chinese Journal of Polymer Science, ;2019, 37(9): 891-897. doi: 10.1007/s10118-019-2290-4 shu

Cationic Polymerization of Isobutylene and C4 Mixed Feed Using Complexes of Lewis Acids with Ethers: A Comparative Study

  • The cationic polymerization of C4 mixed feed and isobutylene co-initiated by AlCl3×OiPr2, iBuAlCl2×nOiPr2, and [emim]Cl-FeCl3×nOiPr2 ([emim]Cl: 1-ethyl-3-methylimidazolium chloride) has been investigated. AlCl3×OiPr2 co-initiated cationic polymerization of C4 mixed feed proceeds at a lower rate than polymerization of isobutylene affording polymers with higher molecular weight. Complexes of iBuAlCl2 with diisopropyl ether of different compositions are more suitable co-initiators than AlCl3×OiPr2 for the synthesis of highly reactive polyisobutylene (HR PIB) from C4 mixed feed due to their higher activity in the polymerization as well as possibility to prepare polyisobutylenes with lower molecular weight and higher content of exo-olefin end groups. However, iBuAlCl2 needs activating via addition of external water (initiator) and/or interaction with salts hydrates in order to increase the reaction rate and the saturated monomer conversion. [Emim]Cl-FeCl3/iPr2O is a quite promising catalyst for the preparation of HR PIB with high exo-olefin end group content (> 80%) and relatively low polydispersity (Mw/Mn < 2.8) via cationic polymerization of C4 mixed feed. The sonication of reaction mixture in case of using [emim]Cl-FeCl3 allowed increasing the reaction rate and decreasing the molecular weight.
  • 加载中
    1. [1]

      Mach, H.; Rath, P. Highly reactive polyisobutene as a component of a new generation of lubricant and fuel additives. Lubr. Sci. 1999, 11-2, 175–185.

    2. [2]

      Kostjuk, S. V.; Yeong, H. Y.; Voit, B. Cationic polymerization of isobutylene at room temperature. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 471–486.  doi: 10.1002/pola.26423

    3. [3]

      Kostjuk, S. V. Recent progress in the Lewis acids co-initiated cationic polymerization of isobutylene and 1,3-dienes. RSC Adv. 2015, 5, 13125–13144.  doi: 10.1039/C4RA15313H

    4. [4]

      Li, Y.; Cokoja, M.; Kühn, F. E. Inorganic/organometallic catalysts and initiators involving weakly coordinating anions for isobutene polymerization. Coord. Chem. Rev. 2011, 255, 1541–1557.  doi: 10.1016/j.ccr.2010.12.007

    5. [5]

      Ummadisetty, S.; Storey, R. F. Quantitative synthesis of exo-olefin-terminated polyisobutylene: ether quenching and evaluation of various quenching methods. Macromolecules 2013, 46, 2049–2059.  doi: 10.1021/ma4000286

    6. [6]

      Lichtenthaler, M. R.; Higelin, A.; Kraft, A.; Hughes, S.; Steffani, A.; Plattner, D. A.; Slattery, J. M.; Krossing, I. Univalent gallium salts of weakly coordinating anions: Effective initiators/catalysts for the synthesis of highly reactive polyisobutylene. Organometallics 2013, 32, 6725–6735.  doi: 10.1021/om4005516

    7. [7]

      Guerrero, A.; Kulbaba, K.; Bochmann, M. " Highly reactive” poly(isobutene)s via room temperature polymerization with a new zinc-based initiator system. Macromolecules 2007, 40, 4124–4126.  doi: 10.1021/ma070430a

    8. [8]

      Burrington, J. D.; Johnson, J. R.; Pudelski, J. K. Cationic polymerization using heteropolyacid salt catalysts. Topics in Catal. 2003, 23, 175–181.  doi: 10.1023/A:1024892925055

    9. [9]

      Vasilenko, I. V.; Frolov, A. N.; Kostjuk, S. V. Cationic polymerization of isobutylene using AlCl3OBu2 as a co-initiator: Synthesis of highly reactive polyisobutylene. Macromolecules 2010, 43, 5503–5507.  doi: 10.1021/ma1009275

    10. [10]

      Liu, Q.; Wu, Y. X.; Zhang, Y.; Yan, P. F.; Xu, R. W. A cost-effective process for highly reactive polyisobutylenes via cationic polymerization coinitiated by AlCl3. Polymer 2010, 51, 5960–5969.  doi: 10.1016/j.polymer.2010.10.012

    11. [11]

      Liu, Q.; Wu, Y.; Yan, P.; Zhang, Y.; Xu, R. Polyisobutylene with high exo-olefin content via β-H elimination in the cationic polymerization of isobutylene with H2O/FeCl3/dialkyl ether initiating system. Macromolecules 2011, 44, 1866–1875.  doi: 10.1021/ma1027017

    12. [12]

      Guo, A. R.; Yang, X. J.; Yan, P. F.; Wu, Y. H. Synthesis of highly reactive polyisobutylenes with exo-olefin terminals via controlled cationic polymerization with H2O/FeCl3/iPrOH initiating system in nonpolar hydrocarbon media. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4200–4212.  doi: 10.1002/pola.26834

    13. [13]

      Kumar, R.; Dimitrov, P.; Bartelson, K. J.; Emert, J.; Faust, R. Polymerization of isobutylene by GaCl3 or FeCl3/ether complexes in nonpolar solvents. Macromolecules 2012, 45, 8598–8603.  doi: 10.1021/ma3017585

    14. [14]

      Bartelson, K. J.; De, P.; Kumar, R.; Emert, J.; Faust, R. Cationic polymerization of isobutylene by FeCl3/ether complexes in hexanes: an investigation of the steric and electronic effects of ethers. Polymer. 2013, 54, 4858–4863.  doi: 10.1016/j.polymer.2013.07.024

    15. [15]

      Kumar, R.; De, P.; Zheng, B.; Huang, K.-W.; Emert, J.; Faust, R. Synthesis of highly reactive polyisobutylene with FeCl3/ether complexes in hexane; kinetic and mechanistic studies. Polym. Chem. 2015, 6, 322–329.  doi: 10.1039/C4PY01039F

    16. [16]

      Yang, X. J.; Guo, A. R.; Xu, H. C.; Wu, Y. H. Direct synthesis of highly reactive polyisobutylenes via cationic polymerization of isobutylene co-initiated with TiCl4 in nonpolar hydrocarbon media. J. Appl. Polym. Sci. 2015, 132, 42232-42244.

    17. [17]

      Li, X.; Wu, Y.; Zhang, J.; Li, X.; Zhang, M.; Yang, D.; Wang, H.; Shang, Y.; Guo, W.; Yan, P. Syntesis of highly reacive polyisobutylene via cationic polymerization in ionic liquids: characteristisc and mechanism. Polym. Chem. 2019, 10, 201-208.  doi: 10.1039/C8PY01141A

    18. [18]

      Faust, R.; Dimitrov, P.; Kumar, R.; Emert, J.; Hua, J., 2013, U.S. Pat., 20130158217A1.

    19. [19]

      Vasilenko, I. V.; Shiman, D. I.; Kostjuk, S. V. Highly reactive polyisobutylenes via AlCl3OBu2-coinitiated cationic polymerization of isobutylene: effect of solvent polarity, temperature, and initiator. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 750–758.  doi: 10.1002/pola.25830

    20. [20]

      Kostjuk, S. V.; Vasilenko, I. V.; Shiman, D. I.; Frolov, A. N.; Gaponik, L. V. Highly reactive polyisobutylenes via cationic polymerization of isobutylene by AlCl3/ether complexes in non-polar media: scope and limitations. Macromol. Symp. 2015, 349, 94–103.  doi: 10.1002/masy.v349.1

    21. [21]

      Shiman, D. I.; Vasilenko, I. V.; Kostjuk, S. V. Cationic polymerization of isobutylene by AlCl3/ether complexes in non-polar solvents: effect of ether structure on the selectivity of β-H elimination. Polymer 2013, 54, 2235–2242.  doi: 10.1016/j.polymer.2013.02.039

    22. [22]

      Kumar, R.; Zheng, B.; Huang, K.-W.; Emeret, J.; Faust, R. Synthesis of highly reactive polyisobutylene catalyzed by EtAlCl2/bis(2-chloroethyl) ether soluble complex in hexanes. Macromolecules 2014, 47, 1959–1965.  doi: 10.1021/ma500042f

    23. [23]

      Banerjee, S.; Emert, J.; Wright, P.; Skourlis, T.; Severt, R.; Faust, R. Polymerization of isobutylene catalyzed by EtAlCl2/bis(2-chloroethyl) ether complex in steel vessels. Polym. Chem. 2015, 6, 4902–4910.  doi: 10.1039/C5PY00624D

    24. [24]

      S Banerjee, S.; Jha, B. N.; De, P.; Emert, J.; Faust, R. Kinetic and mechanistic studies of the polymerization of isobutylene catalyzed by EtAlCl2/bis(2-chloroethyl) ether complex in hexanes. Macromolecules 2015, 48, 5474–5480.  doi: 10.1021/acs.macromol.5b01441

    25. [25]

      Rajasekhar, T.; Emert, J.; Faust, R. Synthesis of highly reactive polyisobutylene by catalytic chain transfer in hexanes at elevated temperatures: determination of the kinetic parameters Polym. Chem. 2017, 8, 2852–2859.

    26. [26]

      Rajasekhar, T.; Haldar, U.; Emert, J.; Dimitrov, P.; Severt, R.; Faust R. Catalytic chain transfer polymerization of isobutylene: the role of nucleophilic impurities. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3697–3704.  doi: 10.1002/pola.v55.22

    27. [27]

      Rajasekhar, T.; Emert, J.; Wolf, L. M.; Faust, R. Controlled catalytic chain transfer polymerization of isobutylene in the presence of tert-butanol as exo-enhancer. Macromolecules 2018, 51, 3041–3049.  doi: 10.1021/acs.macromol.8b00327

    28. [28]

      Vasilenko, I. V.; Shiman, D. I.; Kostjuk, S. V. Alkylaluminum dichloride-ether complexes which are fully soluble in hydrocarbons as catalysts for the synthesis of exo-olefin terminated polyisobutylene at room temperature. Polym. Chem. 2014, 5, 3855–3866.  doi: 10.1039/C4PY00069B

    29. [29]

      Shiman, D. I.; Vasilenko, I. V.; Kostjuk, S. V. Cationic polymerization of isobutylene by complexes of alkylaluminum dichlorides with diisopropyl ether: an activating effect of water. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2386–2393.  doi: 10.1002/pola.v52.16

    30. [30]

      Vasilenko, I. V.; Nikishev, P. A.; Shiman, D. I.; Kostjuk, S. V. Cationic polymerization of isobutylene in toluene: toward well-defined exo-olefin terminated medium molecular weight polyisobutylenes under mild conditions. Polym. Chem. 2017, 8, 1417–1425.  doi: 10.1039/C6PY02131J

    31. [31]

      Shiman, D. I.; Vasilenko, I. V.; Kostjuk, S. V. Cationic polymerization of isobutylene catalyzed by iBuAlCl2 in the presence of ethers: effect of catalyst pre-activation and mixture of two ethers. Polymer 2016, 99, 633–641.  doi: 10.1016/j.polymer.2016.07.014

    32. [32]

      Zhu, S.; Lu, Y.; Faust, R. Micromixing enhanced synthesis of HRPIBs catalyzed by EADC/(bis(2-chloroethyl)ether complex. RSC Adv. 2017, 7, 27629–27636.  doi: 10.1039/C7RA05246D

    33. [33]

      Vasilenko, I. V.; Berezianko, I. A.; Shiman, D. I.; Kostjuk, S. V. New catalyst for the synthesis of highly reactive polyisobutylene: chloroaluminate imidazole-based ionic liquid in the presence of diisopropyl ether. Polym. Chem. 2016, 7, 5615–5619.  doi: 10.1039/C6PY01325B

    34. [34]

      Berezianko, I. A.; Vasilenko, I. V.; Kostjuk, S. V. Acidic imidazole-based ionic liquids in the presence of diisopropyl ether as catalysts for the synthesis of highly reactive polyisobutylene: effect of ionic liquid nature, catalyst aging, and sonication. Polymer 2018, 145, 382–390.  doi: 10.1016/j.polymer.2018.04.059

    35. [35]

      Zhang, L. B.; Wu, Y. X.; Zhou, P.; Xu, R. W. Synthesis of highly reactive polyisobutylene by selective polymerization with o-cresol/AlCl3 initiating system. Polym. Adv. Technol. 2012, 23, 522–528.  doi: 10.1002/pat.v23.3

    36. [36]

      Zhang, L. B.; Wu, Y. X.; Zhou, P.; Wu, G. Y.; Yang, W. T.; Yu, D. S. Synthesis of highly reactive polyisobutylenes with BF3·cyclohexanol initiating system. Chinese J. Polym. Sci. 2011, 29, 360–367.  doi: 10.1007/s10118-011-1042-x

    37. [37]

      Rajasekhar, T.; Haldar, U.; De, P.; Emert, J.; Faust, R. Cationic copolymerization and multicomponent polymerization of isobutylene with C4 olefins. Macromolecules. 2017, 50, 8325–8333.  doi: 10.1021/acs.macromol.7b01941

    38. [38]

      De, P.; Faust, R. Relative reactivity of C4 olefins toward the polyisobutylene cation. Macromolecules 2006, 39, 6861–6870.  doi: 10.1021/ma0611725

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    3. [3]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    4. [4]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    5. [5]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    6. [6]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    7. [7]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    8. [8]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    9. [9]

      Xu ZhangJiang LiKai-Zhou LuYa-Nan YangJian-Shuang JiangXiang YuanZi-Ming FengFei YePei-Cheng Zhang . Neosophoflavonoids A–C, A class of highly oxidized hybrid flavonoids from Sophora flavescens with antidiabetic effects. Chinese Chemical Letters, 2024, 35(10): 109456-. doi: 10.1016/j.cclet.2023.109456

    10. [10]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    11. [11]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    12. [12]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    13. [13]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    14. [14]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    15. [15]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    16. [16]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    17. [17]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    18. [18]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    19. [19]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    20. [20]

      Dan OuyangHuan HuangYanting HeJiajing ChenJiali LinZhuling ChenZongwei CaiZian Lin . Utilization of hydralazine as a reactive matrix for enhanced detection and on-MALDI-target derivatization of saccharides. Chinese Chemical Letters, 2024, 35(5): 108885-. doi: 10.1016/j.cclet.2023.108885

Metrics
  • PDF Downloads(0)
  • Abstract views(883)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return