Citation: Yi-Jun Liu, Dong Liu, Si-Han Li, Hua-Qing Liang, Fang-Ming Zhu. Investigation on Viscoelasticity of Waterborne Polyurethane with Azobenzene-containing Pendant Groups under Ultraviolet and Visible-light Irradiation[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1267-1272. doi: 10.1007/s10118-019-2289-x shu

Investigation on Viscoelasticity of Waterborne Polyurethane with Azobenzene-containing Pendant Groups under Ultraviolet and Visible-light Irradiation

  • Corresponding author: Fang-Ming Zhu, ceszfm@mail.sysu.edu.cn
  • Received Date: 6 April 2019
    Revised Date: 28 April 2019
    Available Online: 26 June 2019

  • In this study, a novel waterborne polyurethane (WPU) with azobenzene-containing (azo-containing) pendant groups was synthesized by isophorone diisocyanate, long-chain diol of polycaprolactone, 2-ethyl-2-methyl-butanoic acid (2,2-dimethylolpropionic acid), 10-(4-(phenyldiazenyl)phenoxy)decyl-3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate, and N,N-diethyl-ethanamine (triethylamine). Moreover, the influence of ultraviolet and visible (UV-Vis) light irradiation on the viscoelasticity of azo-containing WPU film in terms of the reversible trans-cis photoisomerization of azo-containing pendant groups was investigated by UV-Vis light spectroscopy, atomic force microscopy, and dynamic thermomechanical analysis. The results revealed that the adhesion of azo-containing WPU with single crystal silicon atomic force microscope probe was about 13 nN when irradiated by 450 nm Vis light for 60 s at 25 °C. Subsequently, the adhesion increased to 82 nN after irradiation with 365 nm UV light for 60 s at 25 °C. In addition, the azo-containing WPU presented a photo-induced reversible transition of tensile modulus and tanδ in the range from about 2 MPa to 22 MPa and 6000 to 0.35 with UV-Vis light cyclic irradiation for 120 s at 25 °C, respectively.
  • 加载中
    1. [1]

      Monti, S.; Orlandi, G.; Palmieri, P. Features of the photochemically active state surfaces of azobenzene. Chem. Phys. 1982, 71, 87-99.  doi: 10.1016/0301-0104(82)87008-0

    2. [2]

      Freundlich, H.; Heller, W. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc. 1982, 61, 2228-2230.

    3. [3]

      Cembran, A.; Bernardi, F.; Garavelli, M.; Gagliardi, L.; Orlandi, G. On the mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1. J. Am. Chem. Soc. 2004, 126, 3234-3243.  doi: 10.1021/ja038327y

    4. [4]

      Henzl, J.; Mehlhorn, M.; Gawronski, H.; Rieder, K. H.; Morgenstern, K. Reversible cis-trans isomerization of a single azobenzene molecule. Angew. Chem. Int. Ed. 2006, 45, 603-606.  doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Schultz, T.; Quenneville, J.; Levine, B.; Toniolo, A.; Martínez, T. J.; Lochbrunner, S.; Schmitt, M.; Shaffer, J. P.; Zgieski, M. Z.; Stolow, A. Mechanism and dynamics of azobenzene photoisomerization. J. Am. Chem. Soc. 2003, 125, 8098-8099.  doi: 10.1021/ja021363x

    6. [6]

      Bandara, H. M. D.; Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809-1825.  doi: 10.1039/C1CS15179G

    7. [7]

      Su, W.; Darkwa, J.; Kokogiannakis, G. Review of solid-liquid phase change materials and their encapsulation technologies. J. Renew. Sustain. Ener. 2015, 48, 373-391.  doi: 10.1016/j.rser.2015.04.044

    8. [8]

      Zhang, X. M.; Zeng, Q. D.; Wang, C. Reversible phase transformation at the solid-liquid interface: STM Reveals. Chem. Asian J. 2013, 8, 2330-2340.  doi: 10.1002/asia.201300605

    9. [9]

      Deng, W.; Brûlet A.; Albouy, P, A.; Keler, P.; Wang, X. G.; Li, M. H. Morphology study of a series of azobenzene-containing side-on liquid crystalline triblock copolymers. Chinese J. Polym. Sci. 2012, 30, 258-268.  doi: 10.1007/s10118-012-1117-3

    10. [10]

      Pan, S.; Ni, M.; Mu, B.; Li, Q.; Hu, X. Y.; Lin, C.; Chen, D.; Wang, L. Well‐defined pillararene‐based azobenzene liquid crystalline photoresponsive materials and their thin films with photomodulated surfaces. Adv. Funct. Mater. 2015, 25, 3571-3580.  doi: 10.1002/adfm.v25.23

    11. [11]

      Kim, D. Y.; Lee, S. A.; Kim, H.; Kim, S. M.; Kim, N.; Jeong, K. U. An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter. Chem. Commun. 2015, 51, 11080-11083.  doi: 10.1039/C5CC02834E

    12. [12]

      Kitano, A.; Ichikawa, R.; Nakano, H. Photomechanical response observed for azobenzene-based photochromic amorphous molecular films fabricated on the surface of agar gel. Opt. Mater. 2018, 86, 51-55.  doi: 10.1016/j.optmat.2018.09.029

    13. [13]

      Hu, D.; Lin, J.; Jin, S.; Hu, Y.; Wang, W.; Wang, R.; Yang, B. Synthesis, structure and optical data storage properties of silver nanoparticles modified with azobenzene thiols. Mater. Chem. Phys. 2016, 170, 108-112.  doi: 10.1016/j.matchemphys.2015.12.025

    14. [14]

      Virkki, M.; Tuominen, O.; Forni, A.; Saccone, M.; Metrangolo, P.; Resnati, G.; Priimagi, A. Halogen bonding enhances nonlinear optical response in poled supramolecular polymers. J. Mater. Chem. C 2015, 3, 3003-3006.  doi: 10.1039/C5TC00484E

    15. [15]

      Sobolewska, A.; Bartkiewicz, S.; Mysliwiec, J.; Singer, K. D. Holographic memory devices based on a single-component phototropic liquid crystal. J. Mater. Chem. C 2014, 2, 1409-1412.

    16. [16]

      Beharry, A. A.; Sadovski, O.; Woolley, G. A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 2011, 133, 19684-19687.  doi: 10.1021/ja209239m

    17. [17]

      Zhang, W.; Yoshida, K.; Fujiki, M.; Zhu, X. Unpolarized-light-driven amplified chiroptical modulation between chiral aggregation and achiral disaggregation of an azobenzene-alt-fluorene copolymer in limonene. Macromolecules 2011, 44, 5105-5111.  doi: 10.1021/ma2012128

    18. [18]

      Wang, L.; Yin, L.; Zhang, W.; Zhu, X.; Fujiki, M. Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium. J. Am. Chem. Soc. 2017, 139, 13218-13226.  doi: 10.1021/jacs.7b07626

    19. [19]

      Yin, L.; Liu, M.; Zhao, Y.; Zhang, S.; Zhang, W.; Zhang, Z.; Zhu, X. Supramolecular chirality induced by chiral solvation in achiral cyclic Azo-containing polymers: topological effects on chiral aggregation. Polym. Chem. 2018, 9, 769-776.  doi: 10.1039/C7PY02002C

    20. [20]

      Chiu, K. Y.; Tran, T. T. H.; Chang, S. H.; Yang, T. F.; Su, Y. O. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC. Dyes Pigments 2017, 146, 512-519.  doi: 10.1016/j.dyepig.2017.07.049

    21. [21]

      Chiu, K. Y.; Tran, T. T. H.; Wu, C. G.; Chang, S. H.; Yang, T. F.; Su, Y. O. Electrochemical studies on triarylamines featuring an azobenzene substituent and new application for small-molecule organic photovoltaics. J. Electroanal. Chem. 2017, 787, 118-124.  doi: 10.1016/j.jelechem.2017.01.053

    22. [22]

      Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Günter, K.; Auernhammer; Berger, R.; Butt, H. J.; Wu, S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 2017, 9, 145-151.  doi: 10.1038/nchem.2625

    23. [23]

      Jiang, W. H.; Wang, G. J.; He, Y. N.; An, Y. L.; Wang, X. G.; Song, Y. L.; Jiang, L. Properties of photo-responsive superhydrophobic azobenzene multilayers fabricated by electrostatic self-assembly. Chem. J. Chinese U. 2005, 26, 1360-1362.

    24. [24]

      Zhang, J. L.; Wu, D. M.; Yang, D. Y.; Qiu, F. X. Environmentally friendly polyurethane composites: preparation, characterization and mechanical properties. J. Polym. Environ. 2010, 18, 128-134.  doi: 10.1007/s10924-010-0178-z

    25. [25]

      Akindoyo, J. O.; Beg, M.; Ghazali, S.; Islam, M. R.; Jeyaratnam, N.; Yuvaraj, A. R. Polyurethane types, synthesis and applications-A review. RSC Adv. 2016, 6, 114453-114482.  doi: 10.1039/C6RA14525F

    26. [26]

      Kang, S. Y.; Ji, Z.; Tseng, L. F.; Turner, S. A.; Villanueva, D. A.; Johnson, R.; Ariana, A.; Langer, R. Design and synthesis of waterborne polyurethanes. Adv. Mater. 2018, 30, 1706237.  doi: 10.1002/adma.201706237

    27. [27]

      Li, J.; Zhang, X.; Gooch, J.; Sun, W.; Wang, H.; Wang, K. Photo- and pH-sensitive azo-containing cationic waterborne polyurethane. Polym. Bull. 2015, 72, 881-895.  doi: 10.1007/s00289-015-1312-9

    28. [28]

      Ban, J.; Mu, L.; Yang, J.; Chen, S.; Zhuo, H. New stimulus-responsive shape-memory polyurethanes capable of UV light-triggered deformation, hydrogen bond-mediated fixation, and thermal-induced recovery. J. Mater. Chem. A 2017, 5, 14514-14518.  doi: 10.1039/C7TA04463A

    29. [29]

      Wang, S.; Song, Y.; Jiang, L. Photoresponsive surfaces with controllable wettability. J. Photoch. Photobio. C 2007, 8, 18-29.  doi: 10.1016/j.jphotochemrev.2007.03.001

    30. [30]

      Dai, L.; Cai, L.; Yuan, Y.; Liu, A.; Li, Z. Reversible wettability of optothermal responsively perfluoroalkyl azobenzene self-assembled monolayers. Phosphorus. Sulfur. 2017, 192, 283-291.  doi: 10.1080/10426507.2016.1237947

    31. [31]

      Joshi, G. K.; Blodgett, K. N.; Muhoberac, B. B.; Johnson, M. A.; Smith, K. A.; Sardar, R. Ultrasensitive photoreversible molecular sensors of azobenzene- functionalized plasmonic nanoantennas. Nano Lett. 2014, 14, 532-540.  doi: 10.1021/nl403576c

    32. [32]

      Freyer, W.; Brete, D.; Schmidt, R.; Gahl, C.; Carley, R.; Weinelt, M. Switching behavior and optical absorbance of azobenzene-functionalized alkanethiols in different environments. J. Photoch. Photobio. A 2009, 204, 102-109.  doi: 10.1016/j.jphotochem.2009.02.018

    33. [33]

      Zhang, S.; Jiang, J.; Yang, C.; Chen, M.; Liu, X. Facile synthesis of waterborne UV-curable polyurethane/silica nanocomposites and morphology, physical properties of its nanostructured films. Prog. Org. Coat. 2011, 70, 1-8.  doi: 10.1016/j.porgcoat.2010.09.005

    34. [34]

      Liu, D.; Bastiaansen, C. W.; den Toonder, J. M.; Broer, D. J. Photo‐switchable surface topologies in chiral nematic coatings. Angew. Chem. Int. Ed. 2012, 51, 892-896.  doi: 10.1002/anie.v51.4

    35. [35]

      Dokukin, M. E.; Sokolov, I. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir 2012, 28, 16060-16071.  doi: 10.1021/la302706b

  • 加载中
    1. [1]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    2. [2]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    3. [3]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    4. [4]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    5. [5]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    6. [6]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

Metrics
  • PDF Downloads(0)
  • Abstract views(724)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return