Citation: Jin-Long Zhang, Jun-Yan Tan, Xin-Hua Wan, Jie Zhang. A Luminescent Thermometer Based on Linearly Thermo-responsive Copolymer and Polyoxometalates[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1113-1118. doi: 10.1007/s10118-019-2287-z shu

A Luminescent Thermometer Based on Linearly Thermo-responsive Copolymer and Polyoxometalates

  • Corresponding author: Xin-Hua Wan, xhwan@pku.edu.cn Jie Zhang, jz10@pku.edu.cn
  • Received Date: 8 March 2019
    Revised Date: 1 January 2019
    Available Online: 19 June 2019

  • A novel switchable luminescent thermometer based on thermo-responsive triblock copolymer poly(ethylene glycol)-b-poly(acrylamide-co-acrylonitrile-co-dimethylaminoethylmethacrylate) (PEO113-b-P(AAm264-co-AN112-co-DMA8)) and Eu-containing polyoxometalate (Eu-POM) was successfully constructed. The copolymer synthesized by RAFT exhibited a linear response to temperature variations in aqueous media, which was quite different from the uncharged copolymer P(AAm-co-AN) having a specific upper critical solution temperature (UCST). Eu-POM was surrounded around thermo-responsive blocks through electrostatic interactions, and its luminescence could be finely tuned due to the sensitivity of copolymer to the temperature variation. In cold water, POMs were trapped in highly hydrophobic cores, exhibiting an intense emission. With the upraising of temperature, the emission intensity presented a gradual decrease and showed a linear correlation with temperature. When the complex solution cooled down, the luminescence could also be perfectly restored. This temperature-luminescence correlation could be held for numerous trials, showing a potential application in thermometer.
  • 加载中
    1. [1]

      Gibson, M. I.; O'Reilly, R. K. To aggregate, or not to aggregate? Considerations in the design and application of polymeric thermally-responsive nanoparticles. Chem. Soc. Rev. 2013, 42, 7204-7213.  doi: 10.1039/C3CS60035A

    2. [2]

      Roy, D.; Brooks, W. L.; Sumerlin, B. S. New directions in thermoresponsive polymers. Chem Soc Rev 2013, 42, 7214-43.  doi: 10.1039/c3cs35499g

    3. [3]

      Jochum, F. D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468-7483.  doi: 10.1039/C2CS35191A

    4. [4]

      Grubbs, R. B.; Sun, Z. Shape-changing polymer assemblies. Chem. Soc. Rev. 2013, 42, 7436-45.  doi: 10.1039/c3cs60079c

    5. [5]

      Al-Ahmady, Z.; Kostarelos, K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem. Rev. 2016, 116, 3883-3918.  doi: 10.1021/acs.chemrev.5b00578

    6. [6]

      Seeboth, A.; Lötzsch, D.; Ruhmann, R.; Muehling, O. Thermochromic polymers—Function by design. Chem. Rev. 2014, 114, 3037-3068.  doi: 10.1021/cr400462e

    7. [7]

      Niskanen, J.; Tenhu, H. How to manipulate the upper critical solution temperature (UCST)? Polym. Chem. 2017, 8, 220-232.  doi: 10.1039/C6PY01612J

    8. [8]

      Yin, J.; Hu, J.; Zhang, G.; Liu, S. Schizophrenic core-shell microgels: Thermoregulated core and shell swelling/collapse by combining UCST and LCST phase transitions. Langmuir 2014, 30, 2551-2558.  doi: 10.1021/la500133y

    9. [9]

      Woodfield, P. A.; Zhu, Y.; Pei, Y.; Roth, P. J. Hydrophobically modified sulfobetaine copolymers with tunable aqueous UCST through postpolymerization modification of poly(pentafluorophenyl acrylate). Macromolecules 2014, 47, 750-762.  doi: 10.1021/ma402391a

    10. [10]

      Maji, T.; Banerjee, S.; Biswas, Y.; Mandal, T. K. Dual-stimuli-responsive L-serine-based zwitterionic UCST-type polymer with tunable thermosensitivity. Macromolecules 2015, 48, 4957-4966.  doi: 10.1021/acs.macromol.5b01099

    11. [11]

      Zhang, Q.; Hoogenboom, R. Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Prog. Polym. Sci. 2015, 48, 122-142.  doi: 10.1016/j.progpolymsci.2015.02.003

    12. [12]

      Seuring, J.; Bayer, F. M.; Huber, K.; Agarwal, S. Upper critical solution temperature of poly(N-acryloyl glycinamide) in water: A concealed property. Macromolecules 2012, 45, 374-384.  doi: 10.1021/ma202059t

    13. [13]

      Fu, W. X.; Zhao, B. Thermoreversible physically crosslinked hydrogels from UCST-type thermosensitive ABA linear triblock copolymers. Polym. Chem. 2016, 7, 6980-6991.  doi: 10.1039/C6PY01517D

    14. [14]

      Chen, L.; Honma, Y.; Mizutani, T.; Liaw, D. J.; Gong, J. P.; Osada, Y. Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer 2000, 41, 141-147.  doi: 10.1016/S0032-3861(99)00161-5

    15. [15]

      Seuring, J.; Agarwal, S. First example of a universal and cost-effective approach: Polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules 2012, 45, 3910-3918.  doi: 10.1021/ma300355k

    16. [16]

      Pineda-Contreras, B. A.; Schmalz, H.; Agarwal, S. pH dependent thermoresponsive behavior of acrylamide-acrylonitrile UCST-type copolymers in aqueous media. Polym. Chem. 2016, 7, 1979-1986.  doi: 10.1039/C6PY00162A

    17. [17]

      Zhang, H.; Tong, X.; Zhao, Y. Diverse thermoresponsive behaviors of uncharged UCST block copolymer micelles in physiological medium. Langmuir 2014, 30, 11433-11441.  doi: 10.1021/la5026334

    18. [18]

      Zhang, H.; Guo, S.; Fan, W.; Zhao, Y. Ultrasensitive pH-induced water solubility switch using UCST polymers. Macromolecules 2016, 49, 1424-1433.  doi: 10.1021/acs.macromol.5b02522

    19. [19]

      Käfer, F.; Liu, F.; Stahlschmidt, U.; Jérôme, V.; Freitag, R.; Karg, M.; Agarwal, S. LCST and UCST in one: Double thermoresponsive behavior of block copolymers of poly(ethylene glycol) and poly(acrylamide-co-acrylonitrile). Langmuir 2015, 31, 8940-8946.  doi: 10.1021/acs.langmuir.5b02006

    20. [20]

      Huang, G.; Li, H.; Feng, S.-T.; Li, X.; Tong, G.; Liu, J.; Quan, C.; Jiang, Q.; Zhang, C.; Li, Z. Self-assembled UCST-type micelles as potential drug carriers for cancer therapeutics. Macromol. Chem. Phys. 2015, 216, 1014-1023.  doi: 10.1002/macp.v216.9

    21. [21]

      Misdrahi, M. F.; Wang, M.; Pradeep, C. P.; Li, F.-Y.; Lydon, C.; Xu, L.; Cronin, L.; Liu, T. Amphiphilic properties of dumbbell-shaped inorganic-organic-inorganic molecular hybrid materials in solution and at an interface. Langmuir 2011, 27, 9193-9202.  doi: 10.1021/la2013914

    22. [22]

      Long, D.-L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. 2010, 49, 1736-1758.  doi: 10.1002/anie.v49:10

    23. [23]

      Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893-4962.  doi: 10.1021/cr500390v

    24. [24]

      Wei, H. B.; Zhang, J. L.; Shi, N.; Liu, Y.; Zhang, B.; Zhang, J.; Wan, X. H. A recyclable polyoxometalate-based supramolecular chemosensor for efficient detection of carbon dioxide. Chem. Sci. 2015, 6, 7201-7205.  doi: 10.1039/C5SC02020D

    25. [25]

      Wei, H. B.; Shi, N.; Zhang, J. L.; Guan, Y.; Zhang, J.; Wan, X. H. pH-responsive inorganic-organic hybrid supramolecular hydrogels with jellyfish-like switchable chromic luminescence. Chem. Commun. 2014, 50, 9333-9335.  doi: 10.1039/C4CC04000G

    26. [26]

      Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563-4601.  doi: 10.1039/C4CS00051J

    27. [27]

      Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705.  doi: 10.1038/ncomms1714

    28. [28]

      Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc 2009, 131, 2766-2767.  doi: 10.1021/ja807714j

    29. [29]

      Seuring, J.; Agarwal, S. Polymers with upper critical solution temperature in aqueous solution. Macromol. Rapid. Commun 2012, 33, 1898-1920.  doi: 10.1002/marc.v33.22

    30. [30]

      Zhang, J.; Shi, N.; Zhang, J.; Guan, Y.; Qiao, W.; Wan, X. Light triggered co-assembly of photocleavable copolymers and polyoxometalates with enhanced photoluminescence. Macromol. Rapid. Commun 2017, 38, 1600550.  doi: 10.1002/marc.v38.2

    31. [31]

      Bu, W. F.; Li, H. L.; Li, W.; Wu, L. X.; Zhai, C. X.; Wu, Y. Q. Surfactant-encapsulated europium-substituted heteropolyoxotungstates: Structural characterizations and photophysical properties. J. Phys. Chem. B 2004, 108, 12776-12782.  doi: 10.1021/jp0485237

    32. [32]

      Zhang, T. R.; Spitz, C.; Antonietti, M.; Faul, C. F. J. Highly photoluminescent polyoxometaloeuropate-surfactant complexes by ionic self-assembly. Chem. Eur. J 2005, 11, 1001-1009  doi: 10.1002/(ISSN)1521-3765

  • 加载中
    1. [1]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    2. [2]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    3. [3]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    4. [4]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    5. [5]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    6. [6]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    7. [7]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    10. [10]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    11. [11]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    12. [12]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    13. [13]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    14. [14]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    15. [15]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    16. [16]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

Metrics
  • PDF Downloads(0)
  • Abstract views(770)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return