Citation: Zhuo-Lun Jiang, Jun-Peng Zhao, Guang-Zhao Zhang. Readily Prepared and Tunable Ionic Organocatalysts for Ring-opening Polymerization of Lactones[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1205-1214. doi: 10.1007/s10118-019-2285-1 shu

Readily Prepared and Tunable Ionic Organocatalysts for Ring-opening Polymerization of Lactones

  • Corresponding author: Jun-Peng Zhao, msjpzhao@scut.edu.cn
  • Received Date: 26 March 2019
    Revised Date: 22 April 2019
    Accepted Date: 25 April 2019
    Available Online: 26 June 2019

  • Highly potent ionic organocatalyst is developed for room-temperature controlled ring-opening polymerization (ROP) of lactones, including δ-valerolactone, ε-caprolactone, and δ-hexalactone. The catalysts are prepared by simply mixing tetra-n-butyl ammonium hydroxide and a (thio)urea at elevated temperature under vacuum, and used in cooperation with an alcoholic initiator. The performance of the catalyst is readily adjusted and optimized through variation of the (thio)urea precursor, catalyst composition, and reaction condition. Urea-derived catalysts are generally superior to thiourea-derived ones. Provided with proper N-substituents, the catalyst affords both high polymerization efficiency and high selectivity for monomer enchainment over macromolecular transesterification, even at high monomer conversion and/or substantially extended reaction time. In addition to acidity, structural symmetry of the urea also proves decisive for the catalytic activity, which enables a catalyst-assisted proton transfer process for the ring-opening of lactone and thus provides a novel mechanistic insight for ROP catalyzed by hydrogen-bonding type bifunctional ionic organocatalysts.
  • 加载中
    1. [1]

      Albertsson, A.-C.; Varma, I. K. Aliphatic polyesters: Synthesis, properties and applications. Adv. Polym. Sci. 2002, 157, 1-40.  doi: 10.1007/3-540-45734-8

    2. [2]

      Nair, L. S.; Laurencin, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762-798.  doi: 10.1016/j.progpolymsci.2007.05.017

    3. [3]

      Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484-3504.  doi: 10.1039/b820162p

    4. [4]

      Lecomte, P.; Jérôme, C. Recent developments in ring-opening polymerization of lactones. Adv. Polym. Sci. 2012, 245, 173-217.

    5. [5]

      Williams, C. K. Synthesis of functionalized biodegradable polyesters. Chem. Soc. Rev. 2007, 36, 1573-1580.  doi: 10.1039/b614342n

    6. [6]

      Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Organocatalytic ring-opening polymerization. Chem. Rev. 2007, 107, 5813-5840.  doi: 10.1021/cr068415b

    7. [7]

      Kiesewetter, M. K.; Shin, E. J.; Hedrick, J. L.; Waymouth, R. M. Organocatalysis: Opportunities and challenges for polymer synthesis. Macromolecules 2010, 43, 2093-2107.  doi: 10.1021/ma9025948

    8. [8]

      Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Progr. Polym. Sci. 2016, 56, 64-115.  doi: 10.1016/j.progpolymsci.2015.12.001

    9. [9]

      Hu, S.; Zhao, J.; Zhang, G.; Schlaad, H. Macromolecular architectures through organocatalysis. Progr. Polym. Sci. 2017, 74, 34-77.  doi: 10.1016/j.progpolymsci.2017.07.002

    10. [10]

      Boileau, S.; Illy, N. Activation in anionic polymerization: Why phosphazene bases are very exciting promoters. Prog. Polym. Sci. 2011, 36, 1132-1151.  doi: 10.1016/j.progpolymsci.2011.05.005

    11. [11]

      Liu, S.; Ren, C.; Zhao, N.; Shen, Y.; Li, Z. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters. Macromol. Rapid Commun. 2018, 1800485.

    12. [12]

      Fevre, M.; Pinaud, J.; Gnanou, Y.; Vignolle, J.; Taton, D. N-Heterocyclic carbenes (nhcs) as organocatalysts and structural components in metal-free polymer synthesis. Chem. Soc. Rev. 2013, 42, 2142-2172.  doi: 10.1039/c2cs35383k

    13. [13]

      Naumann, S.; Dove, A. P. N-Heterocyclic carbenes as organocatalysts for polymerizations: trends and frontiers. Polym. Chem. 2015, 6, 3185-3200.  doi: 10.1039/C5PY00145E

    14. [14]

      Gazeau-Bureau, S.; Delcroix, D.; Martín-Vaca, B.; Bourissou, D.; Navarro, C.; Magnet, S. Organo-catalyzed ROP of ε-caprolactone: Methanesulfonic acid competes with trifluoromethanesulfonic acid. Macromolecules 2008, 41, 3782-3784.  doi: 10.1021/ma800626q

    15. [15]

      Kakuchi, R.; Tsuji, Y.; Chiba, K.; Fuchise, K.; Sakai, R.; Satoh, T.; Kakuchi, T. Controlled/living ring-opening polymerization of δ-valerolactone using triflylimide as an efficient cationic organocatalyst. Macromolecules 2010, 43, 7090-7094.  doi: 10.1021/ma100798u

    16. [16]

      Makiguchi, K.; Satoh, T.; Kakuchi, T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules 2011, 44, 1999-2005.  doi: 10.1021/ma200043x

    17. [17]

      Thomas, C.; Bibal, B. Hydrogen-bonding organocatalysts for ring-opening polymerization. Green Chem. 2014, 16, 1687-1699.  doi: 10.1039/C3GC41806E

    18. [18]

      Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L. Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 2006, 128, 4556-4557.  doi: 10.1021/ja060662+

    19. [19]

      Zhang, X.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem. 2016, 8, 1047-1053.  doi: 10.1038/nchem.2574

    20. [20]

      Lohmeijer, B. G. G.; Pratt, R. C.; Leibfarth, F.; Logan, J. W.; Long, D. A.; Dove, A. P.; Nederberg, F.; Choi, J.; Wade, C.; Waymouth, R. M.; Hedrick, J. L. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 2006, 39, 8574-8583.  doi: 10.1021/ma0619381

    21. [21]

      Li, H.; Wang, C.; Yue, J.; Zhao, X.; Bai, F. Living ring-opening polymerization of lactides catalyzed by guanidinium acetate. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 3775-3781.

    22. [22]

      Makiguchi, K.; Kikuchi, S.; Yanai, K.; Ogasawara, Y.; Sato, S.; Satoh, T.; Kakuchi, T. Diphenyl phosphate/4-dimethylaminopyridine as an efficient binary organocatalyst system for controlled/living ring-opening polymerization of L-lactide leading to diblock and end-functionalized poly(L-lactide)s. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1047-1054.

    23. [23]

      Wang, X.; Cui, S.; Li, Z.; Kan, S.; Zhang, Q.; Zhao, C.; Wu, H.; Liu, J.; Wu, W.; Guo, K. A base-conjugate-acid pair for living/controlled ring-opening polymerization of trimethylene carbonate through hydrogen-bonding bifunctional synergistic catalysis. Polym. Chem. 2014, 5, 6051-6059.  doi: 10.1039/C4PY00773E

    24. [24]

      Miao, Y.; Stanley, N.; Favrelle, A.; Bousquet, T.; Bria, M.; Mortreux, A.; Zinck, P. New acid/base salts as co-catalysts for the organocatalyzed ring opening polymerization of lactide. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 659-664.  doi: 10.1002/pola.v53.5

    25. [25]

      Lin, B.; Waymouth, R. M. Urea anions: Simple, fast, and selective catalysts for ring-opening polymerizations. J. Am. Chem. Soc. 2017, 139, 1645-1652.  doi: 10.1021/jacs.6b11864

    26. [26]

      Tan, C.; Xiong, S.; Chen, C. Fast and controlled ring-opening polymerization of cyclic esters by alkoxides and cyclic amides. Macromolecules 2018, 51, 2048-2053.  doi: 10.1021/acs.macromol.7b02697

    27. [27]

      Lin, L.; Han, D.; Qin, J.; Wang, S.; Xiao, M.; Sun, L.; Meng, Y. Nonstrained γ-butyrolactone to high-molecular-weight poly(γ-butyrolactone): facile bulk polymerization using economical ureas/alkoxides. Macromolecules 2018, 51, 9317-9322.  doi: 10.1021/acs.macromol.8b01860

    28. [28]

      Xia, Y.; Chen, Y.; Song, Q.; Hu, S.; Zhao, J.; Zhang, G. Base-to-base organocatalytic approach for one-pot construction of poly(ethylene oxide)-based macromolecular structures. Macromolecules 2016, 49, 6817-6825.  doi: 10.1021/acs.macromol.6b01542

    29. [29]

      Pothupitiya, J. U.; Dharmaratne, N. U.; Jouaneh, T. M. M.; Fastnacht, K. V.; Coderre, D. N.; Kiesewetter, M. K. H-bonding organocatalysts for the living, solvent-free ring-opening polymerization of lactones: toward an all-lactones, all-conditions approach. Macromolecules 2017, 50, 8948-8954.  doi: 10.1021/acs.macromol.7b01991

    30. [30]

      Zhang, C. J.; Hu, L. F.; Wu, H. L.; Cao, X. H.; Zhang, X. H., Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules 2018, 51, 8705-8711.  doi: 10.1021/acs.macromol.8b01757

    31. [31]

      Blain, M.; Yau, H.; Jean-Gerard, L.; Auvergne, R.; Benazet, D.; Schreiner, P. R.; Caillol, S.; Andrioletti, B. Urea- and thiourea-catalyzed aminolysis of carbonates. ChemSusChem 2016, 9, 2269-2272.  doi: 10.1002/cssc.201600778

    32. [32]

      Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K. M.; Schreiner, P. R. (Thio)urea organocatalyst equilibrium acidities in DMSO. Org. Lett. 2012, 14, 1724-1727.  doi: 10.1021/ol300307c

    33. [33]

      Walvoord, R. R.; Huynh, P. N. H.; Kozlowski, M. C. Quantification of electrophilic activation by hydrogen-bonding organocatalysts. J. Am. Chem. Soc. 2014, 136, 16055-16065.  doi: 10.1021/ja5086244

    34. [34]

      Lin, B.; Waymouth, R. M. Organic ring-opening polymerization catalysts: Reactivity control by balancing acidity. Macromolecules 2018, 51, 2932-2938.  doi: 10.1021/acs.macromol.8b00540

    35. [35]

      Zhao, W.; Wang, Q.; Cui, Y.; He, J.; Zhang, Y. Living/controlled ring-opening (co)polymerization of lactones by al-based catalysts with different sidearms. Dalton Trans. DOI: 10.1039/C8DT03941K.  doi: 10.1039/C8DT03941K

    36. [36]

      Wang, Q.; Zhao, W.; He, J.; Zhang, Y.; Chen, E. Y. X. Living ring-opening polymerization of lactones by N-heterocyclic olefin/Al(C6F5)3 Lewis pairs: Structures of intermediates, kinetics, and mechanism. Macromolecules 2017, 50, 123-136.  doi: 10.1021/acs.macromol.6b02398

    37. [37]

      Zhao, J.; Hadjichristidis, N. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides. Polym. Chem. 2015, 6, 2659-2668.  doi: 10.1039/C5PY00019J

    38. [38]

      Pothupitiya, J. U.; Hewawasam, R. S.; Kiesewetter, M. K. Urea and thiourea h-bond donating catalysts for ring-opening polymerization: Mechanistic insights via (non)linear free energy relationships. Macromolecules 2018, 51, 3203-3211.  doi: 10.1021/acs.macromol.8b00321

    39. [39]

      Fuchise, K.; Igarashi, M.; Sato, K.; Shimada, S. Organocatalytic controlled/living ring-opening polymerization of cyclotrisiloxanes initiated by water with strong organic base catalysts. Chem. Sci. 2018, 9, 2879-2891.  doi: 10.1039/C7SC04234E

    40. [40]

      Dove, A. P.; Pratt, R. C.; Lohmeijer, B. G. G.; Waymouth, R. M.; Hedrick, J. L. Thiourea-based bifunctional organocatalysis: Supramolecular recognition for living polymerization. J. Am. Chem. Soc. 2005, 127, 13798-13799.  doi: 10.1021/ja0543346

    41. [41]

      Kazakov, O. I.; Datta, P. P.; Isajani, M.; Kiesewetter, E. T.; Kiesewetter, M. K. Cooperative hydrogen-bond pairing in organocatalytic ring-opening polymerization. Macromolecules 2014, 47, 7463-7468.  doi: 10.1021/ma501847x

    42. [42]

      Kazakov, O. I.; Kiesewetter, M. K. Cocatalyst binding effects in organocatalytic ring-opening polymerization of L-lactide. Macromolecules 2015, 48, 6121-6126.  doi: 10.1021/acs.macromol.5b01140

    43. [43]

      Datta, P. P.; Pothupitiya, J. U.; Kiesewetter, E. T.; Kiesewetter, M. K., Coupled equilibria in H-bond donating ring-opening polymerization: The effective catalyst-determined shift of a polymerization equilibrium. Eur. Polym. J. 2017, 95, 671-677.  doi: 10.1016/j.eurpolymj.2017.05.018

  • 加载中
    1. [1]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    2. [2]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    5. [5]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    6. [6]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    7. [7]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    8. [8]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    9. [9]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    10. [10]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    11. [11]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    12. [12]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    13. [13]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    14. [14]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

Metrics
  • PDF Downloads(0)
  • Abstract views(697)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return