Citation: Lei Shi, Ruo-Yu Zhang, Wu-Bin Ying, Han Hu, Yu-Bin Wang, Ya-Qian Guo, Wen-Qin Wang, Zhao-Bin Tang, Jin Zhu. Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1152-1161. doi: 10.1007/s10118-019-2283-3 shu

Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property

  • Thermoplastic poly(ether-ester-urethane)s were synthesized from poly(L-lactide) diols (PLLA diols), polytetrahydrofuran diol (PTMG diols), 4,4′-dicyclohexylmethane diisocyanate (HMDI), and 1,4-butanediol (BDO) by a two-step reaction, and the morphology and property of the resultant TPU could be adjusted by varying the PLLA contents. The soft segment was composed of PLLA and PTMG diols. By controlling the percentage of PLLA in the soft segment, the glass transition temperature and mechanical properties of the polyurethanes could be regulated. Based on the FTIR spectrum, we found that two kinds of hydrogen bonding existed individually in soft matrix and hard domain. The hydrogen bonding in soft matrix was unstable, which could be destroyed during elongation. With in situ stretching WAXS and SAXS experiments, we found that the PLLA crystal was destroyed and the PLLA domain oriented along the stretch direction. Finally, we proposed a schematic model to illustrate the microstructures of these elastomers before and after stretch.
  • 加载中
    1. [1]

      Sheth, J. P.; Xu, J. N.; Wilkes, G. L. Solid state structure-property behavior of semicrystalline poly (ether-block-amide) PEBAX® thermoplastic elastomers. Polymer 2003, 44, 743-756.  doi: 10.1016/S0032-3861(02)00798-X

    2. [2]

      Hepburn, C. Polyurethane elastomers. Springer Science & Business Media, 2012.

    3. [3]

      Oertel, G. Polyurethane handbook. Reinf. Plast 1986, 30, 51.

    4. [4]

      Harrell, L. L. Segmented Polyurethans. Properties as a function of segment size and distribution. Macromolecules 1969, 2, 607-612.  doi: 10.1021/ma60012a008

    5. [5]

      Oguro, K.; Kun, N.; Nishimura, H.; Kobayashi, M.; Doi, T. Modified PTMG based thermoplastic polyurethane elastomers. J. Elastom. Plast. 1985, 17, 261-272.  doi: 10.1177/009524438501700404

    6. [6]

      Fang, H.; Wang, H.; Sun, J.; Wei, H.; Ding, Y. Tailoring elastomeric properties of waterborne polyurethane by incorporation of polymethyl methacrylate with nanostructural heterogeneity. RSC Adv. 2016, 6, 13589-13599.  doi: 10.1039/C5RA26664E

    7. [7]

      Nozaki, S.; Hirai, T.; Higaki, Y.; Yoshinaga, K.; Kojio, K.; Takahara, A. Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer. Polymer 2017, 116, 423-428.  doi: 10.1016/j.polymer.2017.03.031

    8. [8]

      Petrović, Z. S.; Ferguson, J. Polyurethane elastomers. Prog. Polym. Sci 1991, 16, 695-836.  doi: 10.1016/0079-6700(91)90011-9

    9. [9]

      Prisacariu, C.; Scortanu, E.; Coseri, S.; Agapie, B. Effect of soft segment polydispersity on the elasticity of polyurethane elastomers. Ind. Eng. Chem. Res. 2013, 56, 2316-2322.

    10. [10]

      Tang, D.; Macosko, C. W.; Hillmyer, M. A. Thermoplastic polyurethane elastomers from bio-based poly (δ-decalactone) diols. Polym. Chem. 2014, 5, 3231-3237.  doi: 10.1039/C3PY01120H

    11. [11]

      Xiang, D.; Liu, L.; Liang, Y. Effect of hard segment content on structure, dielectric and mechanical properties of hydroxyl-terminated butadiene-acrylonitrile copolymer-based polyurethane elastomers. Polymer 2017, 132, 180-187.  doi: 10.1016/j.polymer.2017.11.001

    12. [12]

      Lempesis, N.; In, t. V., Pieter J; Rutledge, G. C. Atomistic simulation of the structure and mechanics of a semicrystalline polyether. Macromolecules 2016, 49, 5714-5726.  doi: 10.1021/acs.macromol.6b00555

    13. [13]

      Szycher, M.; Poirier, V. L.; Dempsey, D. J. Development of an aliphatic biomedical-grade polyurethane elastomer. J. Elastom. Plast. 1983, 15, 81-95.  doi: 10.1177/009524438301500205

    14. [14]

      Cheng, G.; Liu, X.; Ruixiang, X. U.; Zhang, J.; Fang, S.; Jiang, Z. Effect of polyether soft segments on the properties of hmdi based transparent polyurethane elastomers. Polyurethane Industry 2016, 31, 40-43.

    15. [15]

      Solíscorrea, R. E.; Vargascoronado, R.; Aguilarvega, M.; Cauichrodríguez, J. V.; Román, J. S.; Marcos, A. Synthesis of HMDI-based segmented polyurethanes and their use in the manufacture of elastomeric composites for cardiovascular applications. J. Biomat. Sci-Polym. E 2007, 18, 561-578.  doi: 10.1163/156856207780852488

    16. [16]

      Li, Z.; Tan, B. H.; Lin, T.; He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 2016, 62, 22-72.  doi: 10.1016/j.progpolymsci.2016.05.003

    17. [17]

      Li, Z.; Yuan, D.; Jin, G.; Tan, B. H.; He, C. Facile layer-by-layer self-assembly toward enantiomeric poly (lactide) stereocomplex coated magnetite nanocarrier for highly tunable drug deliveries. ACS Appl. Mater. Interfaces 2016, 8, 1842-1853.  doi: 10.1021/acsami.5b09822

    18. [18]

      Tan, B. H.; Muiruri, J. K.; Li, Z.; He, C. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain. Chem. Eng. 2016, 4, 5370-5391.  doi: 10.1021/acssuschemeng.6b01713

    19. [19]

      Huang, J.; Lisowski, M. S.; Runt, J.; Hall, E. S.; Kean, R. T.; Buehler, N.; Lin, J. S. Crystallization and microstructure of poly (L-lactide-co-meso-lactide) copolymers. Macromolecules 1998, 31, 2593-2599.  doi: 10.1021/ma9714629

    20. [20]

      Lv, R.; Peng, N.; Jin, T.; Na, B.; Wang, J.; Liu, H. Stereocomplex mesophase and its phase transition in enantiomeric polylactides. Polymer 2017, 116, 324-330.  doi: 10.1016/j.polymer.2017.04.004

    21. [21]

      Abayasinghe, N. K.; Perera, K. P.; Thomas, C.; Daly, A.; Suresh, S.; Burg, K.; Harrison, G. M.; Jr, S. D. Amido-modified polylactide for potential tissue engineering applications. J. Biomat. Sci. Polym. E 2004, 15, 595-606.  doi: 10.1163/156856204323046861

    22. [22]

      Panyam, J.; Vinod Labhasetwar, V. Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol. Pharm. 2004, 1, 77-84.  doi: 10.1021/mp034002c

    23. [23]

      Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475-2490.  doi: 10.1016/S0142-9612(00)00115-0

    24. [24]

      Jung, T.; Kamm, W.; Breitenbach, A.; Kaiserling, E.; Xiao, J. X.; Kissel, T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 2000, 50, 147-160.  doi: 10.1016/S0939-6411(00)00084-9

    25. [25]

      Gu, S. Y.; Yang, M.; Yu, T.; Ren, T. B.; Ren, J. Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym. Inter. 2008, 57, 982-986.  doi: 10.1002/pi.v57:8

    26. [26]

      Hoshi, M.; Ieshige, M.; Saitoh, T.; Nakagawa, T. Separation of aqueous phenol through polyurethane membranes by pervaporation. II. Influence of diisocyanate and diol compounds and crosslinker. J. Appl. Polym. Sci. 1999, 71, 439-448.  doi: 10.1002/(ISSN)1097-4628

    27. [27]

      Hiltunen, K.; Härkönen, M.; Seppälä, J. V.; Väänänen, T. Synthesis and characterization of lactic acid based telechelic prepolymers. Macromolecules 1996, 29, 8677-8682.  doi: 10.1021/ma960402k

    28. [28]

      Schneider, N. S.; Matton, R. W. Thermal transition behavior of polybutadiene containing polyurethanes. Polym. Eng. Sci. 1979, 19, 1122-1128.  doi: 10.1002/(ISSN)1548-2634

    29. [29]

      Xu, M.; Macknight, W. J.; Chen, C. H. Y.; Thomas, E. L. Structure and morphology of segmented polyurethanes: 1. Influence of incompatability on hard-segment sequence length. Polymer 1983, 24, 1327-1332.  doi: 10.1016/0032-3861(83)90068-X

    30. [30]

      Hesketh, T. R.; Vanbogart, J. W. C.; Cooper, S. L. Differential scanning calorimetry analysis of morphological-changes in segmented elastomers. Polym. Eng. Sci. 1980, 20, 190-197.  doi: 10.1002/(ISSN)1548-2634

    31. [31]

      Tsuji, H.; Ishida, T. Poly (L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly (L-lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. J. Appl. Polym. Sci. 2003, 87, 1628-1633.  doi: 10.1002/app.11605

    32. [32]

      Lucas, J. C.; Failla, M. D.; Smith, F. L.; Mandelkern, L. The double yield in the tensile deformation of the polyethylenes. Polym. Eng. Sci. 1995, 35, 1117-1123.  doi: 10.1002/(ISSN)1548-2634

    33. [33]

      Popli, R.; Mandelkern, L. Influence of structural and morphological factors on the mechanical-properties of the polyethylenes. J. Polym. Sci. Part. B: Polym. Phys. 1987, 25, 441-483.  doi: 10.1002/polb.1987.090250301

    34. [34]

      Lendlein, A.; Kelch, S. Shape-memory polymers. Encyclopedia of Materials Science & Technology 2002, 41, 2034-2057.

    35. [35]

      Zhang, L.; Jiang, Y.; Xiong, Z.; Liu, X.; Na, H.; Zhang, R.; Zhu, J. Highly recoverable rosin-based shape memory polyurethanes. J. Mater. Chem. A 2013, 1, 3263-3267.  doi: 10.1039/c3ta01655b

  • 加载中
    1. [1]

      Jaeheon Lee Jung Hyeun Kim . Effect of thermal annealing on cold crystallization ability of thermoset polyurethane elastomer synthesized from fully bio-derived polyol. Chinese Journal of Structural Chemistry, 2025, 44(5): 100568-100568. doi: 10.1016/j.cjsc.2025.100568

    2. [2]

      Ziqi Chen Miriding Mutailipu . Achieving the birefringence-bandgap trade-off: hydrogen-bond engineered biuret-cyanurate. Chinese Journal of Structural Chemistry, 2025, 44(10): 100695-100695. doi: 10.1016/j.cjsc.2025.100695

    3. [3]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    4. [4]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    5. [5]

      Shi LiWenshuai ZhaoYong QiWenbin NiuWei MaBingtao TangShufen Zhang . Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films. Chinese Chemical Letters, 2025, 36(9): 110653-. doi: 10.1016/j.cclet.2024.110653

    6. [6]

      Mengya GeZijie ZhouHuaiyang ZhuYing WangChao WangChao LaiQinghong Wang . Multifunctional gel electrolytes for high-performance zinc metal batteries. Chinese Chemical Letters, 2025, 36(7): 110121-. doi: 10.1016/j.cclet.2024.110121

    7. [7]

      Xing CaoXinyu TianYuanyuan HuangLiping ZhangYanpeng NiYu-Zhong Wang . H3PO3-protonated chitosan enabling flame-retardant and antibacterial PVA composite films with high strength and toughness through multiple H-bonds and interlocking interfaces. Chinese Chemical Letters, 2025, 36(11): 111382-. doi: 10.1016/j.cclet.2025.111382

    8. [8]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    9. [9]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    10. [10]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    11. [11]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    12. [12]

      Ruiyan CHENYanping HEJian ZHANG . Synthesis and third-order nonlinear optical property of Ti4L6 cage-based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2149-2156. doi: 10.11862/CJIC.20250177

    13. [13]

      Yi-Chang Yang Rui-Xi Wang Li-Ming Wu Ling Chen . Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals. Chinese Journal of Structural Chemistry, 2025, 44(10): 100714-100714. doi: 10.1016/j.cjsc.2025.100714

    14. [14]

      Xiao LiuHangqi LiuQian WangDandan ZhengSibo WangMasakazu AnpoGuigang Zhang . Rational synthesis of poly(heptazine imides) nanorod in ternary LiCl/NaCl/KCl for visible light hydrogen production. Chinese Chemical Letters, 2025, 36(12): 111621-. doi: 10.1016/j.cclet.2025.111621

    15. [15]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    16. [16]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    17. [17]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    18. [18]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    19. [19]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    20. [20]

      Xiaonan LIHui HANYihan ZHANGJing XIONGTingting GUOJuanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376

Metrics
  • PDF Downloads(0)
  • Abstract views(1553)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return