Citation: T Sajini, Renjith Thomas, Beena Mathew. Computational Design and Fabrication of Enantioselective Recognition Sorbents for L-phenylalanine Benzyl Ester on Multiwalled Carbon Nanotubes Using Molecular Imprinting Technology[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1305-1318. doi: 10.1007/s10118-019-2282-4 shu

Computational Design and Fabrication of Enantioselective Recognition Sorbents for L-phenylalanine Benzyl Ester on Multiwalled Carbon Nanotubes Using Molecular Imprinting Technology

  • Corresponding author: Beena Mathew, beenamscs@gmail.com
  • Received Date: 25 March 2019
    Revised Date: 11 April 2019
    Available Online: 18 June 2019

  • Computational strategies have been employed to investigate the influence of the nature of monomers and cross-linker in order to design three dimensional imprinted polymers with selective recognition sites for L-phenylalanine benzyl ester (L-PABE) molecule. Here, computational chemistry methods were applied to screen the molar quantity of functional monomers that interact with one mole of the template molecule. Effects of the nature of functional monomer, cross-linker, and molar ratio were determined computationally using density functional calculations with B3LYP functional and generic 6-31G basis set. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were used as the functional monomer and crosslinking agent, respectively. L-PABE imprinted polymer layered on multiwalled carbon nanotube (MWCNT) and conventional bulk MIP were synthesised and characterized as well. To investigate the influence of pre-organization of binding sites on the selectivity of L-PABE, respective non-imprinted polymers were also synthesised. MWCNT-MIPs and MIPs exhibited the highest adsorption capacity towards L-PABE. The synthesized polymers revealed characteristic adsorption features and selectivity towards L-PABE in comparison with those of its enantiomer analogues.
  • 加载中
    1. [1]

      Ertürk, G; Mattiasson, B. Molecular imprinting techniques used for the preparation of biosensors. Sensors 2017, 288, 1-17.

    2. [2]

      Shah, N; Haneef, M; Park, J; Ul-Islam, M. A Brief overview of molecularly imprinted polymers: from basics to applications. J. Pharm. Res. 2012, 5, 3309-3317.

    3. [3]

      Ou, J; Dong, J; Tian, T; Hu, J; Ye, M; Zou, H. Enantioseparation of tetrahydropalmatine and Tröger’s base by molecularly imprinted monolith in capillary electrochromatography. J. Biochem. Biophys. Methods 2007, 70, 71-76.  doi: 10.1016/j.jbbm.2006.07.003

    4. [4]

      Lu, Y; Li, C; Zhang, H; Liu, X. Study on the mechanism of chiral recognition with molecularly imprinted polymers. Anal. Chim. Acta 489, 2003, 489, 33-43.  doi: 10.1016/S0003-2670(03)00708-6

    5. [5]

      Mahony, J. O; Karlsson, B. C. G; Nicholls, I. A. Correlated theoretical , spectroscopic and X-ray crystallographic studies of a non-covalent molecularly imprinted polymerisation system. Analyst 2007, 132, 1161-1168.  doi: 10.1039/b706258c

    6. [6]

      Sajini, T; Gigimol, M. G; Mathew, B. A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices. Mater. Today Chem. 2019, 11, 283-295.  doi: 10.1016/j.mtchem.2018.11.010

    7. [7]

      Zhong, C; Yang, B; Jiang, X; Li, J. Critical reviews in analytical chemistry current progress of nanomaterials in molecularly imprinted electrochemical sensing current progress of nanomaterials in molecularly imprinted electrochemical sensing. Crit. Rev. Anal. Chem. 2018, 48, 15-32.  doi: 10.1080/10408347.2017.1360762

    8. [8]

      Rezaei, B; Rahmanian, O. Direct nanolayer preparation of molecularly imprinted polymers immobilized on multiwalled carbon nanotubes as a surface-recognition sites and their characterization. J. Appl. Polym. Sci. 2012, 125, 798-803.  doi: 10.1002/app.v125.1

    9. [9]

      Jacobs, C. B; Peairs, M. J; Venton, B. J; Nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105-127.  doi: 10.1016/j.aca.2010.01.009

    10. [10]

      Anirudhan, T. S; Alexander, S. Synthesis and characterization of vinyl-functionalized multiwalled carbon nanotubes based molecular imprinted polymer for the separation of chlorpyrifos from aqueous solutions. J. Chem. Technol. Biotechnol. DOI: 10.1002/jctb.4039.  doi: 10.1002/jctb.4039

    11. [11]

      Xu, L; Xu, Z. Molecularly imprinted polymer based on multiwalled carbon nanotubes for ribavirin recognition. J. Polym. Res. 2012, 19, 1-6.  doi: 10.1007/s10965-012-0001-8

    12. [12]

      Kan, X; Zhao, Y; Geng, Z; Wang, Z; Zhu, J. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J. Phys. Chem. C 2008, 112, 4849-4854.

    13. [13]

      Scida, K; Stege, P. W; Haby, G; Messina, G. A; and García, C. D. Recent applications of carbon-based nanomaterials in analytical chemistry. Anal. Chim. Acta 2011, 691, 6-17.  doi: 10.1016/j.aca.2011.02.025

    14. [14]

      Prasad, B. B; Srivastava, A; Pandey, I; Tiwari, M. P. Electrochemically grown imprinted polybenzidine nanofilm on multiwalled carbon nanotubes anchored pencil graphite fibers for enantioselective micro-solid phase extraction coupled with ultratrace sensing of D- and L-methionine. J. Chromatogr. B 2013, 912, 65-74.  doi: 10.1016/j.jchromb.2012.10.010

    15. [15]

      Datsyuk, V; Kalyva, M; Papagelis, K; Parthenios, J; Tasis, D; Siokou, A; Kallitsis, I; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 6, 2-9.

    16. [16]

      Nicholls, I. A; Andersson, H. S; Golker, K; Henschel, H; Karlsson, B. C. G; Olsson, G. D; Rosengren, A. M; Shoravi, S; Suriyanarayanan, S; Wiklander, J. G; Wikman, S. Rational design of biomimetic molecularly imprinted materials: Theoretical and computational strategies for guiding nanoscale structured polymer development. Anal. Bioanal. Chem. 2011, 400, 1771-1786.  doi: 10.1007/s00216-011-4935-1

    17. [17]

      Meier, F; Schott, B; Riedel, D; Mizaikoff, B. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Anal. Chim. Acta 2012, 744, 68-74.  doi: 10.1016/j.aca.2012.07.020

    18. [18]

      Riahi, S; Farrin, E. T; Javanbakht, M; Mohammad, Ganjali, R; Norouzi, P. A computational approach to studying monomer selectivity towards the template in an imprinted polymer. J. Mol. Model. 2009, 15, 829-836.  doi: 10.1007/s00894-008-0437-2

    19. [19]

      Cowen, T; Karim, K; Piletsky, S. Computational approaches in the design of synthetic receptors -A review. Anal. Chim. Acta 2016, 936, 62-74.  doi: 10.1016/j.aca.2016.07.027

    20. [20]

      Nicholls, I. A; Chavan, S; Golker, K; Karlsson, C. G; Olsson, G. D; Rosengren, A. M. Theoretical and computational strategies for the study of the molecular imprinting process and polymer performance. Adv. Biochem. Eng. Biotechnol. 2015, 150, 25-50.

    21. [21]

      Batra, D; Shea, K. J. Combinatorial methods in molecular imprinting. Curr. Opin. Chem. Biol. 2003, 7, 434-442.  doi: 10.1016/S1367-5931(03)00060-7

    22. [22]

      Sajini, T; Aravind, K; Mathew, B. Theoretical and computational strategies for the fabrication of enantioselective recognition siteon molecularly imprinted polymers. Int. J. Curr. Adv. Res. 2017, 6.

    23. [23]

      Nicholls, I. A; Andersson, H. S; Charlton, C; Henschel, H; Karlsson, B. C. G; Karlsson, J. K; Mahony, J. O; Rosengren, A. M; Rosengren, K. J; Wikman, S. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens. Bioelectron. 2009, 25, 543-552.  doi: 10.1016/j.bios.2009.03.038

    24. [24]

      Tadi, K. K; Motghare, R. V. Computational and experimental studies on oxalic acid imprinted polymer. J. Chem. Sci. 2013, 125, 413-418.  doi: 10.1007/s12039-013-0381-2

    25. [25]

      Riahi, S; Eynollahi, S; Ganjali, M. R; Norouzi, P. Computational approach to investigation of template/monomer complex in imprinted polymers; dinitrobenzene sensor. Int. J. Electrochem. Sci. 2010, 5, 509-516.

    26. [26]

      Khan, M. S; Wate, P. S; Krupadam, R. J. Combinatorial screening of polymer precursors for preparation of benzo[α] pyrene imprinted polymer: An ab initio computational approach. J. Mol. Model. 2012, 18, 1969-1981. DOI: 10.1007/s00894-011-1218-x.  doi: 10.1007/s00894-011-1218-x

    27. [27]

      Nicholls, I. A; Karlsson, C. G; Olsson, G, D. Rosengren, A. M. Computational strategies for the design and study of molecularly imprinted materials. Ind. Eng. Chem. Res. 2018, 10, 27.

    28. [28]

      McCormick, T. M; Bridges, C. R; Carrera, E. I, Dicarmine, P. M; Gibson, G. L; Hollinger, J; Kozycz, L. M; Seferos, D. S. Conjugated polymers: Evaluating DFT methods for more accurate orbital energy modeling. Macromolecules 2013, 46, 3879-3886. DOI: 10.1021/ma4005023.  doi: 10.1021/ma4005023

    29. [29]

      Singh, A. K; Singh, M. Designing L-serine targeted molecularly imprinted polymer via theoretical investigation. J. Theor. Comput. Chem. 2016, 15, DOI: 10.1142/S0219633616500413.  doi: 10.1142/S0219633616500413

    30. [30]

      Mojica, E. R. E. Screening of different computational models for the preparation of sol-gel imprinted materials, J. Mol. Model. 2013, 19, 3911-3923, DOI: 10.1007/s00894-013-1928-3.  doi: 10.1007/s00894-013-1928-3

    31. [31]

      Silva, C. F; Borges, K. B; Soares, C. Rational design of a molecularly imprinted polymer for dinotefuran: theoretical and experimental studies aimed at the development of an efficient adsorbent for microextraction by packed sorbent. Analyst 2018, 143, 141-149.  doi: 10.1039/C7AN01324H

    32. [32]

      Pardeshi, S; Patrikar, R; Dhodapkar, R; Kumar, A. Validation of computational approach to study monomer selectivity toward the template Gallic acid for rational molecularly imprinted polymer design. J. Mol. Model. 2012, 18, 4797-4810.  doi: 10.1007/s00894-012-1481-5

    33. [33]

      Acquaye, C. T. A; Gorecki, M; Wilchek, M; Votano, J. R; Rich, A. Antisickling activity of amino acid benzyl esters. Proc. Natl. Acad. Sci. 1980, 77, 181-185.  doi: 10.1073/pnas.77.1.181

    34. [34]

      Acquaye, C. T. A; Young, J. D; Ellory, J. C; Gorecki, M; Wilchek, M. Mode of transport and possible mechanism of action of L-phenylalanine benzyl ester as an anti-sickling agent. Biochim. Biophys. Acta 1982, 693, 407-416.  doi: 10.1016/0005-2736(82)90448-5

    35. [35]

      Frisch, G. E. S. M. J.; Trucks, G. W.; Schlegel, H. B.; Robb, B. M. M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, H. P. H. G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Izmaylov, M. H. A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Ehara, T. N. M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Honda, J. Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, E. B. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Kudin, J. N. K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Raghavachari, J. T. K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Cossi, J. B. C. M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Bakken, R. E. S. V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Yazyev, J. W. O. O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Martin, G. A. V. R. L.; Morokuma, K.; Zakrzewski, V. G.; Salvador, A. D. D. P.; Dannenberg, J. J.; Dapprich S.; Farkas, D. J. F. O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. Gaussian 09 Revis. D.01, 2013.

    36. [36]

      Dennington, R.; Keith, T.; Millam, J. Semichem Inc. Shawnee Mission. KS, 2016.

    37. [37]

      Polimer. P; Molekul, C. Synthesis and characterization of a molecularly imprinted polymer for Pb2+ uptake using 2-vinylpyridine as the complexing monomer. Sains. Malaysiana 2010, 39, 829-835.

    38. [38]

      Zakaria, N. D; Yusof, N. A; Haron, J; Abdullah, A. H. Synthesis and evaluation of a molecularly imprinted polymer. Int. J. Mol. Sci. 2009, 10, 354-365.  doi: 10.3390/ijms10010354

    39. [39]

      Zhang, W; Li, Q; Cong, J; Wei, B; Wang, S. Mechanism analysis of selective adsorption and specific recognition by molecularly imprinted polymers of Ginsenoside Re. Polymers 2018, 10. DOI: 10.3390/polym10020216.  doi: 10.3390/polym10020216

    40. [40]

      Yuan, H; Ma, X; Xu, Z. Pore structure analysis of PFSA/SiO2 composite catalysts from nitrogen adsorption isotherms. Sci. China Chem. 2011, 54, 257-262.  doi: 10.1007/s11426-010-4185-7

    41. [41]

      Li, S; Huang, X; Zheng, M; Li, W; Tong, K. Molecularly imprinted polymers: Thermodynamic and kinetic considerations on the specific sorption and molecular recognition. Sensors 2008, 8, 2854-2864.  doi: 10.3390/s8042854

    42. [42]

      Karim, K; Breton, F; Rouillon, R; Piletska, E. V; Guerreiro, A; Chianella, I; Piletsky, S. A. How to find effective functional monomers for effective molecularly imprinted polymers?. Adv. Drug Deliv. Rev. 2005, 57, 1795-1808.  doi: 10.1016/j.addr.2005.07.013

    43. [43]

      Liu, J; Wang, Y; Tang, S. Theoretical guidance for experimental research of the dicyandiamide and methacrylic acid molecular imprinted polymer. New J. Chem. 2017, 41, 13370-13376.  doi: 10.1039/C7NJ00207F

    44. [44]

      Muhammad, T; Nur, Z; Piletska, E. V; Piletsky, S. A. Rational design of molecularly imprinted polymer: the choice of cross-linker. Analyst 2012, 137, 2623-2628.  doi: 10.1039/c2an35228a

  • 加载中
    1. [1]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    2. [2]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    3. [3]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    4. [4]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    5. [5]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    6. [6]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    7. [7]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    8. [8]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    9. [9]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    10. [10]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    11. [11]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    12. [12]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    13. [13]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    14. [14]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    15. [15]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    16. [16]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    17. [17]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    18. [18]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    19. [19]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    20. [20]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

Metrics
  • PDF Downloads(0)
  • Abstract views(698)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return