Citation: Zhen-Yan Liu, Zhi-Mei Wei, Xiao-Jun Wang, Gang Zhang, Sheng-Ru Long, Jie Yang. Preparation and Characterization of Multi-layer Poly(arylene sulfide sulfone) Nanofibers Membranes for Liquid Filtration[J]. Chinese Journal of Polymer Science, ;2019, 37(12): 1248-1256. doi: 10.1007/s10118-019-2280-6 shu

Preparation and Characterization of Multi-layer Poly(arylene sulfide sulfone) Nanofibers Membranes for Liquid Filtration

  • Corresponding author: Xiao-Jun Wang, wangxj@scu.edu.cn Jie Yang, ppsf@scu.edu.cn
  • Received Date: 8 March 2019
    Revised Date: 18 April 2019
    Available Online: 4 June 2019

  • Owing to the excellent filtration performance and low energy cost, polymeric nanofibers microfiltration (MF) membranes have attracted increasing attentions. Poly(arylene sulfide sulfone) (PASS), as one of the structurally modified polymers based on poly(phenylene sulfide) (PPS), has been selected as the raw material to fabricate nanofibers MF membranes via electrospun techniques. The effects of PASS solution and the electrospinning processing parameters on the structural morphology of nanofibers were investigated in detail. The average diameter of PASS nanofibers was (296 ± 46) nm under the optimal condition: polymer concentration of 0.27 g·mL–1 PASS/DMI, applied voltage of 20 kV, and speed of collector drum of 300 r·min–1. And then the multi-layer PASS nanofibers MF membranes were fabricated from cold-pressing the optimized PASS nanofibers (as-prepared PASS nanofibers) membrane. The morphology, porosity, pore size, mechanical properties, and surface wettability of the multi-layer PASS nanofibers MF membranes could be tuned by the layers of as-prepared nanofibers membrane. The results demonstrated that the membrane with 6 layers (marked as PASS-6) exhibited the smallest porosity, smallest pore size, highest mechanical property, and best surface wettability. Meanwhile, the multi-layer PASS nanofibers MF membranes showed that the rejection ratio gradually increased, while the pure water flux decreased with increasing membranes thickness. The PASS-6 membrane exhibited large water flux of 747.76 L·m–2·h–1 and high separation efficiency of 99.9% to 0.2 μm particles, making it a promising candidate for microfilter.
  • 加载中
    1. [1]

      Phomdum, P.; Gassara, S.; Deratani, A.; Chinpa, W. Enhancement of resistance to protein fouling of poly (ether imide) membrane by surface grafting with PEG under organic solvent-free condition. Chinese. J. Polym. Sci. 2018, 36, 1157-1167.  doi: 10.1007/s10118-018-2144-5

    2. [2]

      Arefi-Oskoui, S.; Khataee, A.; Vatanpour, V. Effect of solvent type on the physicochemical properties and performance of NLDH/PVDF nanocomposite ultrafiltration membranes. Sep. Purif. Technol. 2017, 184, 97-118.  doi: 10.1016/j.seppur.2017.04.040

    3. [3]

      Chen, X. R.; Su, Y.; Shen, F.; Wan, Y. H. Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers: Effect of copolymer composition and PEG chain length. J. Membr. Sci. 2011, 384, 44-51.  doi: 10.1016/j.memsci.2011.09.002

    4. [4]

      Ding, H. Y.; Zhang, Q.; Wang, F. M.; Tian, Y.; Wang, L. H.; Shi, Y. Q.; Liu, B. Q. Structure control of polyphenylene sulfide membrane prepared by thermally induced phase separation. J. Appl. Polym. Sci. 2007, 105, 3280-3286.  doi: 10.1002/(ISSN)1097-4628

    5. [5]

      Meng, X. L.; Yu, G. H.; Ma, J. Preparation and properties of poly (aryl ether sulfone ketone) ultrafiltration membrane containing fluorene group for high temperature condensed water treatment. Chinese. J. Polym. Sci. 2018, 36, 970-978.  doi: 10.1007/s10118-018-2142-7

    6. [6]

      Wu, J. J.; Zhou, J.; Rong, J. Q.; Lu, Y.; Dong, H.; Yu, H. Y.; Gu, J. S. Grafting branch length and density dependent performance of zwitterionic polymer decorated polypropylene membrane. Chinese. J. Polym. Sci. 2018, 36, 528-535.  doi: 10.1007/s10118-018-2013-2

    7. [7]

      Lee, K. P.; Arnot, T. C.; Mattia, D. A review of reverse osmosis membrane materials for desalination-Development to date and future potential. J. Membr. Sci. 2011, 370, 1-22.  doi: 10.1016/j.memsci.2010.12.036

    8. [8]

      Homaeigohar, S. S.; Buhr, K.; Ebert, K. Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. J. Membr. Sci. 2010, 365, 68-77.  doi: 10.1016/j.memsci.2010.08.041

    9. [9]

      Liu, Y.; Wang, R.; Ma, H.; Hsiao, B. S.; Chu, B. High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes. Polymer. 2013, 54, 548-556.  doi: 10.1016/j.polymer.2012.11.064

    10. [10]

      Pi, J. K; Yang, H. C.; Wan, L. S.; Wu, J.; Xu, Z. K. Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. J. Membr. Sci. 2016, 500, 8-15.  doi: 10.1016/j.memsci.2015.11.014

    11. [11]

      Zhang, G.; Yuan, S. S.; Li, Z. M.; Long, S. R.; Yang, J. Poly (arylene ether sulfone) containing thioether units: synthesis, oxidation and properties. RSC Adv. 2014, 4, 23191-23201.  doi: 10.1039/C4RA02829E

    12. [12]

      Li, D. S.; Long, S. R.; Zhang, G.; Yang, J. Preparation of the poly (arylene sulfide sulfone)/multi-walled carbon nanotubes composites via in situ polymerization. J. Nanosci. Nanotechnol. 2013, 13, 3920-3927.  doi: 10.1166/jnn.2013.6901

    13. [13]

      Yang, J.; Wang, H. D.; Xu, S. X.; Li, G. X.; Huang, Y. J. Study on polymerization conditions and structure of poly (phenylene sulfide sulfone). J. Polym. Res. 2005, 12, 317-323.  doi: 10.1007/s10965-004-6386-2

    14. [14]

      Zhang, G.; Ren, H. H.; Li, D. S.; Long, S. R.; Yang, J. Synthesis of highly refractive and transparent poly (arylene sulfide sulfone) based on 4, 6-dichloropyrimidine and 3, 6-dichloropyridazine. Polymer 2013, 54, 601-606.  doi: 10.1016/j.polymer.2012.12.008

    15. [15]

      Liu, L.; Wang, X. J.; Wang, Y. Y; Li, L.; Pan, K.; Yang, J.; Cao, B. Preparation and characterization of asymmetric polyarylene sulfide sulfone (PASS) solvent-resistant nanofiltration membranes. Mater. Lett. 2014, 132, 11-14.  doi: 10.1016/j.matlet.2014.05.154

    16. [16]

      Yuan, S. S.; Wang, J.; Li, X.; Zhu, J. Y.; Volodine, A.; Wang, X. J.; Yang, J.; Van Puyvelde, P.; van der Bruggen, B. New promising polymer for organic solvent nanofiltration: oxidized poly (arylene sulfide sulfone). J. Membr. Sci. 2018, 549, 438-445.  doi: 10.1016/j.memsci.2017.12.036

    17. [17]

      Yuan, S. S.; Zhu, J. Y.; Li, J.; Volodine, A.; Yang, J.; van Puyvelde, P.; van der Bruggen, B. Nano/microstructure decorated thin film composite poly (arylene sulfide sulfone) membrane constructed by induced fouling in organic solvent ultrafiltration. Chem. Eng. J. 2018, 348, 180-190.  doi: 10.1016/j.cej.2018.04.183

    18. [18]

      Wang, Z.; Crandall, C.; Sahadevan, R.; Menkhaus, T. J.; Fong, H. Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer. 2017, 114, 64-72.  doi: 10.1016/j.polymer.2017.02.084

    19. [19]

      Li, X. H.; Yang, W. M.; Li, H. Y.; Wang, Y.; Bubakir, M. M.; Ding, Y. M.; Zhang, Y. C. Water filtration properties of novel composite membranes combining solution electrospinning and needleless melt electrospinning methods. J. Appl. Polym. Sci. 2015, 132, 41601.  doi: 10.1002/app.41601

    20. [20]

      Suchecka, T.; Biernacka, E.; Piatkiewicz, W. Microorganism Retention on Microfiltration Membranes. Filtr. Separat. 2003, 40, 50-55.

    21. [21]

      Li, M.; Wang, D.; Xiao, R.; Sun, G.; Zha, Q.; Li, H. A novel high flux poly (trimethylene terephthalate) nanofiber membrane for microfiltration media. Sep. Purif. Technology. 2013, 116, 199-205.  doi: 10.1016/j.seppur.2013.05.046

    22. [22]

      Ma, H.; Burger, C.; Hsiao, B. S.; Chu, B. Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J. Mater. Chem. 2011, 21, 7507-7510.  doi: 10.1039/c0jm04308g

    23. [23]

      Gibson, P.; Schreuder-Gibson, H.; Rivin, D. Transport properties of porous membranes based on electrospun nanofibers. Colloid Surface A. 2001, 187-188, 469-481.  doi: 10.1016/S0927-7757(01)00616-1

    24. [24]

      Song, T. Y.; Yao, C.; Li, X. S. Electrospinning of zein/chitosan composite fibrous membranes. Chinese. J. Polym. Sci. 2010, 28, 171-179.  doi: 10.1007/s10118-010-8239-2

    25. [25]

      Abbaasi, A.; Nasef, M. M.; Takeshi, M.; Faridi-Majidi, R. Electrospinning of nylon-6,6 solutions into nanofibers: Rheology and morphology relationships. Chinese. J. Polym. Sci. 2014, 32, 793-804.  doi: 10.1007/s10118-014-1451-8

    26. [26]

      Wu, H. Y.; Wang, R.; Field, R. W. Direct contact membrane distillation: An experimental and analytical investigation of the effect of membrane thickness upon transmembrane flux. J. Membr. Sci. 2014, 470, 257-265.  doi: 10.1016/j.memsci.2014.06.002

    27. [27]

      Li, X.; García-Payo, M. C.; Khayet, M.; Wang, M.; Wang, X. Superhydrophobic polysulfone/polydimethyl-siloxane electrospun nanofibrous membranes for water desali- nation by direct contact membrane distillation. J. Membr. Sci. 2017, 542, 308-319  doi: 10.1016/j.memsci.2017.08.011

    28. [28]

      Wang, W. C.; Pan, Y. X.; Shi, K.; Peng, C.; Ji, X. L. Hierarchical porous polymer beads prepared by polymerization-induced phase separation and emulsion-template in a microfluidic device. Chinese. J. Polym. Sci. 2014, 32, 1646-1654.  doi: 10.1007/s10118-014-1547-1

    29. [29]

      Wang, X. Y.; Xiao, C. F.; Liu, H. L.; Huang, Q. L.; Fu, H. Fabrication and properties of PVDF and PVDF-HFP microfiltration membranes. J. Appl. Polym. Sci. 2018, 135, 46711.  doi: 10.1002/app.46711

    30. [30]

      Chen, L.; Cheng, H. H.; Xiong, J.; Zhu, Y. T.; Zhang, H. P.; Xiong, X.; Liu, Y. M.; Yu, J.; Guo, Z. X. Improved mechanical properties of poly (butylene succinate) membrane by co-electrospinning with gelatin. Chinese. J. Polym. Sci. 2018, 36, 1063-1069.  doi: 10.1007/s10118-018-2112-0

    31. [31]

      Xiong, Z. Y.; Kong, X. Y.; Guo, Z. X.; Yu, J. Poly (ethylene terephthalate)/carbon black composite fibers prepared by electrospinning. Chinese. J. Polym. Sci. 2015, 33, 1234-1244.  doi: 10.1007/s10118-015-1674-3

    32. [32]

      Rabiee, H.; Vatanpour, V.; Farahani, M. H. D. A.; Zarrabi, H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Sep. Purif. Technol. 2015, 156, 299-310.  doi: 10.1016/j.seppur.2015.10.015

    33. [33]

      Wei, X. T.; Shi, W. L.; Li, Z. Y.; Wang, Z. G.; Wu, X. L.; Xu, J. The influences of surface roughness on the water contact angle for coated substrate with F-DLC. Key. Eng. Mater. 2018, 764, 68-77.  doi: 10.4028/www.scientific.net/KEM.764

    34. [34]

      Gopal, R.; Kaur, S.; Feng, C. Y.; Chan, C.; Ramakrishna, S.; Tabe, S.; Matsuurac, T. Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal. J. Membr. Sci. 2007, 289, 210-219.  doi: 10.1016/j.memsci.2006.11.056

    35. [35]

      Wang, R.; Liu, Y.; Li, B.; Hsiao, B. S.; Chu, B. Electrospun nanofibrous membranes for high flux microfiltration. J. Membr. Sci. 2012, 392-393, 167-174.  doi: 10.1016/j.memsci.2011.12.019

    36. [36]

      Ghani, M.; Gharehaghaji, A. A.; Arami, M.; Takhtkuse, N.; Rezaei, B. Fabrication of electrospun polyamide-6/chitosan nanofibrous membrane toward anionic dyes removal. J. Nanotechnol. 2014, 2014, 1.  doi: 10.1155/2014/278418

    37. [37]

      Guo, J.; Zhang, Q.; Cai, Z. J.; Zhao, K. Y. Preparation and dye filtration property of electrospun polyhydroxybutyrate-calcium alginate/carbon nanotubes composite nanofibrous filtration membrane. Sep. Purif. Technol. 2016, 161, 69-79.  doi: 10.1016/j.seppur.2016.01.036

    38. [38]

      Ma, H. Y.; Burger, C.; Hsiao, B. S.; Chu, B. Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules 2012, 13, 180-186.  doi: 10.1021/bm201421g

    39. [39]

      Zhou, W. Y.; Bahi, A.; Li, Y. J.; Yang, H.; Ko, F. Ultra-filtration membranes based on electrospun poly (vinylidene fluoride) (PVDF) fibrous composite membrane scaffolds. RSC Adv. 2013, 3, 11614-11620.  doi: 10.1039/c3ra40479j

    40. [40]

      Jang, W.; Yun, J.; Jeon, K.; Byun, H. PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications. RSC Adv. 2015, 5, 46711-46717.  doi: 10.1039/C5RA04439A

    41. [41]

      Shahabadi, S. M. S.; Mousavi, S. A.; Bastani, D. High flux electrospun nanofiberous membrane: Preparation by statistical approach, characterization, and microfiltration assessment. J. Taiwan Inst. Chem. Eng. 2016, 59, 474-483.  doi: 10.1016/j.jtice.2015.07.033

    42. [42]

      Bae, J.; Baek, I.; Choi, H. Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem. Eng. J. 2017, 307, 670-678.  doi: 10.1016/j.cej.2016.08.125

  • 加载中
    1. [1]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    2. [2]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    3. [3]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    4. [4]

      Dongsheng YangZixin LiYaoyao LianZiyao FuTianjiao LiPengtao MaGuoping Yang . A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone. Chinese Chemical Letters, 2025, 36(3): 109717-. doi: 10.1016/j.cclet.2024.109717

    5. [5]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    6. [6]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    7. [7]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    8. [8]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    9. [9]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    10. [10]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    11. [11]

      Sushu Zhang Yang Yang Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440

    12. [12]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    13. [13]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    14. [14]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    15. [15]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    16. [16]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    17. [17]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    18. [18]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    19. [19]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    20. [20]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

Metrics
  • PDF Downloads(0)
  • Abstract views(754)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return